Answer Key

Lesson 4.4

Challenge Practice

1		
	-	

Statements	Reasons
1. $LM = JO, MN = ON$	1. Given
$m \angle LNK = m \angle JNK$	
2. $LN = LM + MN$	2. Segment Addition
JN = JO + ON	Postulate
3. $LN = JO + ON$	3. Substitution
	property of
	equality
4. $LN = JN$	4. Substitution
	property of
	equality
5. $\overline{LN} \cong \overline{JN}$	5. Definition of
	congruent
	segments
6. $\overline{NK} \cong \overline{NK}$	6. Reflexive property of congruence
7. $\land LNK \cong \land JNK$	7. SAS Congruence
	Postulate
2	

2.

Statements	Reasons
1. $\overline{DC} \cong \overline{AF}$	1. Given
2. $\overline{FD} \perp \overline{DE}$,	2. Given
$\overline{CA} \perp \overline{AB}$	
3. $\angle EDF$ and $\angle BAC$	3. Definition of \perp lines
are right angles.	
4. $\angle EDF \cong \angle BAC$	4. Right Angles
	Congruence Theorem
5. $DF = DC + CF$	5. Segment Addition
CA = CF + FA	Postulate
6. $DC = AF$	6. Definition of
	congruent segments
7. $DF = FA + CF$	7. Substitution property of equality
8. $DF = CA$	8. Substitution property
	of equality
9. $\overline{DF} \cong \overline{CA}$	9. Definition of
	congruent segments
10. $\triangle ABC \cong \triangle DEF$	10. SAS Congruence Postulate

Answer Key

3.

3.	
Statements	Reasons
1. $DE = BF$,	1. Given
AE = CF	
2. $\overline{AE} \perp \overline{DB}$,	2. Given
$\overline{CF} \perp \overline{BD}$	
3. $\angle AEB$ and $\angle CFD$	3. Definition of \perp lines
are right angles.	
4. $\angle AEB \cong \angle CFD$	4. Right Angles
	Congruence Theorem
5. $BE = BF + FE$	5. Segment Addition
FD = FE + ED	Postulate
6. FD = FE + BF	6. Substitution property of equality
7. $FD = BE$	7. Substitution property of equality
8. $\overline{AE} \cong \overline{CF}$	8. Definition of
$\overline{FD} \cong \overline{BE}$	congruent segments
9. $\triangle AEB \cong \triangle CFD$	9. SAS Congruence
	Postulate
4.	
4. Statements	Reasons
	Reasons 1. Given
Statements	
$\frac{\text{Statements}}{1. \ \overline{QR} \cong \overline{ST},}$	
Statements 1. $\overline{QR} \cong \overline{ST},$ $\overline{QU} \cong \overline{SV}$	1. Given
Statements 1. $\overline{QR} \cong \overline{ST},$ $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \parallel \overline{QT}, \overline{QR} \parallel \overline{TS}$	 Given Given
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \parallel \overline{QT}, \overline{QR} \parallel \overline{TS}$ 3. $\angle RQU \cong \angle UST$	 Given Given Alternate Interior Angles Theorem
Statements 1. $\overline{QR} \cong \overline{ST},$ $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \parallel \overline{QT}, \overline{QR} \parallel \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$	 Given Given Alternate Interior Angles Theorem Definition of
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \parallel \overline{QT}, \overline{QR} \parallel \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$ US = UV + VS	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate
Statements 1. $\overline{QR} \cong \overline{ST},$ $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \parallel \overline{QT}, \overline{QR} \parallel \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate Substitution property
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \ \overline{QT}, \overline{QR} \ \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$ US = UV + VS 6. $QV = SV + UV$	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate Substitution property of equality
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \ \overline{QT}, \overline{QR} \ \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$ US = UV + VS 6. $QV = SV + UV$ 7. $QV = US$	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate Substitution property of equality Substitution property of equality
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \ \overline{QT}, \overline{QR} \ \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$ US = UV + VS 6. $QV = SV + UV$	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate Substitution property of equality Substitution property of equality Definition of
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \parallel \overline{QT}, \overline{QR} \parallel \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$ US = UV + VS 6. $QV = SV + UV$ 7. $\overline{QV} = US$ 8. $\overline{QV} \cong \overline{US}$	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate Substitution property of equality Substitution property of equality Definition of congruent segments
Statements 1. $\overline{QR} \cong \overline{ST}$, $\overline{QU} \cong \overline{SV}$ 2. $\overline{RS} \ \overline{QT}, \overline{QR} \ \overline{TS}$ 3. $\angle RQU \cong \angle UST$ 4. $QU = SV$ 5. $QV = QU + UV$ US = UV + VS 6. $QV = SV + UV$ 7. $QV = US$	 Given Given Alternate Interior Angles Theorem Definition of congruent segments Segment Addition Postulate Substitution property of equality Substitution property of equality Definition of

5. You are given that $\overrightarrow{PS} \cong \overrightarrow{RQ}$. In the diagram, you can see that $\overrightarrow{SR} \parallel \overrightarrow{PQ}$. Therefore, by the Alternate Interior Angles Theorem, you can conclude that $\angle RSQ \cong \angle PQS$. By the reflexive property of congruence, $\overrightarrow{SQ} \cong \overrightarrow{SQ}$. You can now conclude that $\triangle PSQ \cong \triangle RQS$ by the SAS Congruence Postulate.

Answer Key

In the diagram, you can see that $\angle STV$ and $\angle QUV$ are right angles. By the definition of a right triangle, you can conclude that $\triangle STV$ and $\triangle QUV$ are right triangles. You are given that $\overline{SV} \cong \overline{QV}$ and $\overline{ST} \cong \overline{QU}$. Therefore, you can conclude that $\triangle STV \cong \triangle QUV$ by the HL Congruence Theorem. Because $\triangle STV \cong \triangle QUV$, you know that $\overline{TV} \cong \overline{VU}$. So, you can conclude that V is the midpoint of \overline{TU} by the definition of the midpoint of a segment.

6. *X*(4, 10), *Y*(15, 3)