Answer Key

Lesson 4.3

Challenge Practice

1.

Statements	Reasons
1. $\overline{PA} \cong \overline{PC}$	1. Given
$\overline{AB} \cong \overline{BC}$	
2. $\overline{PB} \cong \overline{PB}$	2. Reflexive property
3. $\triangle PAB \cong \triangle PBC$	of congruence 3. SSS Congruence
3. \(\text{ZIMD} = \text{ZI BC}\)	Postulate
2.	
Statements	Reasons
1. $\overline{AD} \cong \overline{CF}$	1. Given
$\overline{DC} \cong \overline{FA}$	
2. $\overline{AC} \cong \overline{AC}$	2. Reflexive property
• • • • • • • • • • • • • • • • • • • •	of congruence
$3. \triangle ADC \cong \triangle CFA$	3. SSS Congruence
2	Postulate
3. Statements	Reasons
$\overline{1. \ \overline{AE} \cong \overline{FC}}$	1. Given
$\overrightarrow{BE} \cong \overrightarrow{BF}$	1. Given
$\frac{BE}{AB} \cong \frac{BI}{BC}$	
2. AE + EF = AF	2. Segment Addition
EF + FC = EC	Postulate
3. FC + EF = AF	3. Substitution property
	of equality
4. $AF = EC$	4. Substitution property of equality
5. $\overline{AF} \cong \overline{EC}$	5. Definition of
6. $\triangle AFB \cong \triangle CEB$	congruent segments6. SSS Congruence
$0. \ \triangle APD = \triangle CED$	Postulate
4.	Tostulate
Statements	Reasons
1. $\triangle ZWV \cong \triangle YXV$	1. Given
2. $\overline{ZW} \cong \overline{YX}$	2. Definition of
$\overline{ZV} \cong \overline{YV}$	congruent triangles
$WV \cong \overline{XV}$	
3. $WV + VY = WY$	3. Segment Addition
XV + VZ = XZ 4. $XV + VZ = WY$	Postulate 4. Substitution property of aquality
4. $XV + VZ = WY$ 5. $WY = XZ$	4. Substitution property of equality5. Substitution property of equality
6. $\overline{WY} \cong \overline{XZ}$	6. Definition of
	congruent segments
7. $\triangle ZWY \cong \triangle YXZ$	7. SSS Congruence Postulate

Answer Key

5. The diagram shows two equilateral triangles, $\triangle ABC$ and $\triangle DEF$. If one side of $\triangle ABC$ is congruent to one side of $\triangle DEF$, such as $\overline{AB} \cong \overline{DE}$, then you know that the triangles are congruent because equilateral triangles have three congruent sides.

6. *J*(3, 9), *K*(7, 8)