4.1 Congruent Figures

List all congruent corresponding parts if $\overrightarrow{ABCD} \cong \overrightarrow{EFGH}$

Example 1: Finding Congruent Parts

If $\triangle BCA \cong \triangle DCA$, name the congruent corresponding parts?

Sides:

Angles:

TIP: If 2 ∠s share a vertex, use 3 letters to name them!

YOU TRY!

 $\triangle LMC \cong \triangle BJK$. Complete the congruence statements.

1)
$$\mathcal{LC} \cong ?$$

4)
$$\angle M \cong ?$$

5)
$$\triangle CML \cong ?$$
 6) $\triangle KBJ \cong ?$

6)
$$\triangle KBJ \cong ?$$

If ML = 10, KB = 9, $m \angle L = 44^{\circ}$, and $m \angle J = 50^{\circ}$, find the following values:

7)
$$CL = ?$$

8)
$$JB = 3$$

7)
$$CL = ?$$
 8) $JB = ?$ 9) $m \angle M = ?$ 10) $m \angle C = ?$

Finding Congruent Triangles:

Are the triangles congruent? Justify your answer.

$$\overline{AB}\cong \overline{ED}$$
 $\angle A\cong \angle E$, $\angle B\cong \angle D$ Given

Yes \triangle ____ $\cong \triangle$ _____

Plan

How do you determine whether two triangles are congruent? Compare each pair of corresponding parts. If a

compare each pair of corresponding parts. If all six pairs are congruent, then the triangles are congruent.

Example 2:

$$\triangle ABD \cong \triangle CBD$$

If $m\angle A = 3x + 10^{\circ} \& m\angle C = 4x^{\circ}$

Find each angle measure:

Theorem 4-1 Third Angles Theorem

Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are congruent.

If . . .

 $\angle A \cong \angle D$ and $\angle B \cong \angle E$

Then . . .

Example:

Determine the missing information needed to prove the triangles congruent. Then write a triangle congruence statement. Justify your answer.

Proving Triangles Congruent

Given: LM \cong LO, MN \cong ON, \angle M \cong \angle O, \angle MLN \cong \angle OLN

Prove: \triangle LMN \cong \triangle LON

Statements

1) $LM \cong LO$, $MN \cong ON$ $\angle M \cong \angle O$, $\angle MLN \cong \angle OLN$

2) *L7V* ≅ *L7V*

3)

 $4) \triangle LMN \cong \triangle LON$

Reasons

1) Given

2)

3) Third Angles Theorem

4)