Chapter 35.

Basic anatomy

- root
- shoot (stem)
- leaves

Expanded anatomy

- root
 - root tip
 - root hairs
- shoot (stem)
 - nodes
 - internodes
 - apical buds
 - axillary buds
 - flowers
- leaves
 - veins

Shoots

Shoots consist of stems, leaves & buds

Stems

nodes = points at which leaves are attached

internodes = stemsegments between nodes

Buds

- growth of shoot
 - terminal or apical bud = at tip of plant
 - <u>axillary bud</u> = in nodes on stem

Modified shoots

stolons (strawberries)

tuber (potato)

bulb (onion)

Roots

- Roots anchor plant in soil, absorb minerals & water, & store food
 - fibrous roots (1)
 - mat of thin roots that spread out
 - monocots
 - tap roots (2)
 - 1 large vertical root
 - also produces many small lateral,

or branch roots

- dicots
- root hairs (3)
 - increase absorptive surface area

Leaves

- Function of leaves?
 - photosynthesis
 - energy production
 - CHO production
 - gas exchange
 - ◆ transpiration

simple vs. compound

Figure 25. Stomata open to allow carbon dioxide (CO₂) to enter a leaf and water vapor to leave.

Stomates

Function of stomates?

Modified leaves

Interdependent systems

Both systems depend on the other

roots receive sugars
 & other nutrients
 from photosynthetic
 parts

shoot system
 depends on water
 & minerals absorbed
 from the soil by roots

Putting it all together energy

Obtaining raw materials
 photosynthesis,

sunlight

leaves = solar collectors

◆ CO₂

stomates = gas exchange

- **♦** H₂O
 - uptake from roots
- nutrients
 - uptake from roots

sugars

respiration, and

photorespiration

starch or sugar

H₂O vapor

storage organ

Figure 24. Photosynthe'sis, respiration, leaf water exchange, and translocation of sugar (photosynthate) in a plant.

Plant tissues

Dermal

- "skin" of plant
- single layer of tightly packed cells that covers
 protects plant

Vascular

- transport materials between roots & shoots
- xylem & phloem

Ground

- everything else: storage, photosynthetic
- bulk of plant tissue

Plant cell types in tissues

(a) Parenchyma cells

(b) Collenchyma cells

Sclerenchyma cells: Fiber cells (c)

Sclerenchyma cells: Sclereids

Plant cell types in tissues

Those would've been great names for my kids!

Parenchyma

- "typical" plant cells = least specialized
- photosynthetic cells, storage cells
- ◆ tissue of leaves, stem, fruit, storage roots

Collenchyma

unevenly thickened primary walls = support

Sclerenchyma

- very thick, "woody" secondary walls = support
- rigid cells that can't elongate
- dead at functional maturity

Parenchyma

- Parenchyma cells are relatively unspecialized, thin, flexible & carry out many metabolic functions
 - all types of cells develop from parenchyma

AP Biology

Collenchyma

- Collenchyma cells have thicker primary walls & provide support
 - help support without restraining growth
 - remain alive in maturity

Parenchyma cells

Collenchyma cells

LM 61x

the strings in celery stalks are collenchyma

Sclerenchyma

- Thick, rigid cell wall
 - lignin (wood)
 - cannot elongate
 - mostly dead at maturity
- Support cells
 - xylem vessels
 - tracheids
 - fibers
 - rope fibers
 - sclereids
 - nutshells
 - seed coats
 - grittiness in pears

Vascular tissue

Transports materials in roots, stems & leaves

- Xylem
 - carry <u>water & minerals</u> up from roots
 - tube-shaped <u>dead</u> cells
 - only their walls provide a system of microscopic water pipes
- Phloem
 - carry <u>nutrients</u> throughout plant
 - sugars (sucrose), amino acids...
 - ◆ tube-shaped <u>living</u> cells

Xylem

- Dead at functional maturity
- Cell elongated into tubes
 - tracheids
 - long, thin cells with tapered ends
 - walls reinforced with lignin = support
 - thinner <u>pits</u> in end walls allows water flow
 - vessel elements
 - wider, shorter, thinner walled & less tapered
 - perforated ends walls allows free water flow

Phloem: food-conducting cells

sieve tube elements & companion cells

Phloem: food-conducting cells

sieve tube elements & companion cells

Phloem

Aaaaah...
Structure-Function
again!

- Living cells at functional maturity
 - ◆ lack nucleus, ribosomes & vacuole
 - more room: specialized for liquid food (sucrose) transport

Cells

- sieve tubes
 - end walls, <u>sieve plates</u>, have pores to facilitate flow of fluid between cells
- companion cells
 - nucleated cells connected to the sieve-tube
 - help sieve tubes

Vascular tissue in herbaceous stems

Root structure: dicot

Root structure: monocot

AP Biology

100 μm 5-2006

Any Questions??

AP Biology 2005-2006