

Circular Motion and Gravitation 3.M Gravitational Fields

DATE _

Scenario

The mass of Mars is 1/10 times that of Earth; the diameter of Mars is 1/2 that of Earth.

Quantitative Analysis

PART A: Derive the equation for gravitational, *g*, due to a planet.

PART B: Let *g* be the gravitational field strength on Earth's surface. Derive an expression for the gravitational field on the surface of Mars without plugging in a value for the mass or radius of Mars. Your answer should be a number multiplied by *g*. For each line of the derivation, explain what was done mathematically (i.e., annotate your derivation).

Argumentation

PART C: A rock is dropped 2.0 meters above the surface of Mars. Does this rock take a longer or a shorter time to fall than a rock dropped 2.0 m above the surface of Earth? Justify your answer without using equations.

PART D:	On the internet, a student finds the following equation for the time an object will take to fall to the		
	ground from a height <i>h</i> , depending on the mass and radius of the planet the object is on: $t = \sqrt{\frac{2hG}{MR^2}}$ Regardless of whether this equation is correct, does it agree with your qualitative reasoning in Part C? In other words, does this equation for <i>t</i> have the expected dependence as reasoned in Part C?		
	Briefly explain your reasoning without deriving an equation for t .		
PART E:	Another student deriving an equation for the time it takes for an object to fall from height h makes a $\sqrt{R^2}$		
	mistake and comes up with: $t = \sqrt{\frac{R^2}{2GMh}}$. Without deriving the correct equation, how can you tell		
	that this equation is not plausible—in other words, that it does not make physical sense? Briefly explain your reasoning.		