Ocean Water

Ocean Water Composition

- Minerals left behind by gases, rivers, & streams break down into elements and gases that mix with the water.
- Elements found in ocean water include: ->

Element	Percent of Ocean water by mass
Chlorine (Cl)	1.94
Sodium (Na)	1.08
Magnesium (Mg)	0.13
Sulfur (S)	0.09
Calcium (Ca)	0.04
Potassium (K)	0.04
Bromine (Br)	0.006
Carbon (C)	0.003
Strontium (Sr)	0.001
Boron (B)	0.0005

Ocean Water Composition

- Dissolved gases in ocean water are:
 - Nitrogen gas (N₂)
 - Oxygen gas (O₂)
 - Carbon dioxide (CO₂)
- Temperature plays vital role to amount of dissolved gases in water
 - Cold regions have a larger amount of gases than warm regions

Salinity

- Amount of **dissolved salts** present in a sample of ocean water
- Described in parts per thousand
 - %o this is the notation for parts per thousand
- Salinity in various regions all differ
 - Range from 33‰ to 40‰
 - Average Salinity is 35‰

Ocean Temperature

- Surface Temperature due to ocean mixing water can be heated to a depth of **300 m**
 - Equator = 30°C (86°F)
 - Poles = -2°C (28.4°F)
- Below that depth the water is very cold, since ocean temperature decreases rapidly with depth

Surface Temperature and Salinity by Latitude

Ocean Temperature Zones

Mixed Layer

- Ocean's surface region where waves and wind mix heat evenly
- Absorbs almost all of the sun's light
- Most marine life found in this layer

Ocean Temperature Zones

- Middle Zone
 - Also called the thermocline
 - **Temperature** drops very rapidly here

Ocean Temperature Zones

Deep Water

- This cold, dense water moves away from the polar regions along the ocean floor and spreads itself over the globe beneath other ocean water
- Here, temperatures are about 2°C

Ocean Water Density

- Seawater density is influenced by two main factors: salinity and temperature
- The pycnocline is the layer of ocean water between about 300 meters and 1000 meters where there is a rapid change of density with depth
- Ocean water is most dense at 4°C

Ocean Currents

Factors Affecting Ocean Surface Currents

- Wind belts
- Earth's rotational effects
- Continental location

Ocean Currents

- Ocean currents involve large water masses and are any continuous flow of water along a broad path in the ocean.
- There are two types of currents
 - Surface
 - Deep

Surface Currents

- A surface current is an ocean current that generally flows in the upper **1000 meters** of the ocean.
- Earth's rotation and presence of continents influence the paths of currents, but surface currents are mainly caused by wind.
- Surface currents in the Northern Hemisphere turn clockwise, and in the Southern Hemisphere turn counterclockwise.

Types of Surface Currents

- Warm currents flow away from the equator (ex. The Gulf Stream in the North Atlantic)
- Cold currents flow toward the equator (ex. The California Current in the North Pacific)
- Gulf Stream Rings eddies or whirlpools that break away from the edge of a current
- Countercurrents flow in the opposite direction of the wind-related currents (occur along the equator)

Continental Location

 Continents are barriers to surface currents, they cause surface flows to be deflected and divided.

Global Ocean Currents

Global Wind Belts

The Coriolis Effect

- The Coriolis effect causes a deflection of earth's winds and ocean currents caused by the earth's rotation.
- This creates huge circles of moving water called gyres. In the N. Hemisphere, the flow is clockwise and in the S. Hemisphere, the flow is counterclockwise.

Trade Winds

- Trade winds and westerly winds form most ocean currents.
- The trade winds blow from the NE in the Northern Hemisphere and the SE in the Southern Hemisphere

Westerlies

 The westerlies blow from SW in the Northern Hemisphere and the NW in the Southern Hemisphere

Map of Global Surface Currents

Deep Currents

- Cold, deep currents move much more slowly than the surface currents
- Produced as cold, dense water of the Polar Regions sinks and flows beneath warmer ocean water toward the equator.
- The movement of water is a result of **density** differences
 - Water cools and contracts
 - water molecules closer together = water denser = water sinks

Deep Currents

- These currents are driven by gravity and differences in density.
- A density current is heavier and denser than surrounding water.
- These currents sink toward the bottom of the ocean where they circulate for 500-2000 years before resurfacing.
- These are found in all oceans.

Global Conveyer Belt

- Warm water in the ocean's upper layers flow toward the poles
- As the temperature changes, this water becomes denser and returns back towards the equator as cold deep water rises/upwells completing the "belt"
- This influences global climate by converting warm water to cold, releasing heat to the atmosphere.
- <u>http://bcs.whfreeman.com/thelifewire/content</u> /chp58/5802003.html

Density Currents from Polar Water

- The most dense water comes from the poles.
- There are three main water masses: Antarctic Bottom Water, North Atlantic Deep Water, and Antarctic Intermediate Water
- Antarctic Bottom Water is the coldest, densest water (-0.4°C)

Density Currents Caused by Evaporation

- When seawater evaporates, salt in water is left behind, increasing both salinity and density of the remaining water.
- An example of this is in the Mediterranean
 Sea. Water here is very dense.

Upwelling and Downwelling

- **Upwelling** is the movement of the deeper, cooler waters away from the shore that rise to the surface.
- Downwelling is the movement of surface waters toward the shore that accumulate and sink to the bottom.

B. Downwelling

Upwelling

- Water that upwells is very nutrient rich
- These become very productive areas for plants to grow
- The plants make a great place for the animals to migrate to

Currents in the N. Atlantic

- Gulf Stream moves 100 million m³ of water per second.
- It moves warm water from the Gulf, along the east coast and into the Arctic.