Answer Key

Lesson 3.4

Challenge Practice

1. No, you can use any two points on a line to find the slope of the line. No, given two points on a line, you can label either one of them as (x_1, y_1) and the other as (x_2, y_2) . When using the formula for slope, order of subtraction is important. Once you choose which point is (x_1, y_1) and which point is (x_2, y_2) , the numerator and denominator must be formed using the same order of subtraction.

2. Slope is the change in *y* over the change in *x*.

For a horizontal line, the value of y does not change, so the change in y is zero. So, the slope equals zero. For a vertical line, the value of x does not change, so the change in x is zero. Because you cannot divide by zero, the slope is undefined.

3. No. The product of their slopes is -1, so one line will have a positive slope and the other line will have a negative slope.

4.
$$k = 11$$
 5. $k = -3$ **6.** $k = \frac{89}{86}$ **7.** $k = \frac{2}{3}$
8. a. Slope of \overline{AC} : $\frac{y-2}{x-4}$; slope of \overline{BC} : $\frac{y+2}{x+4}$

b. $x^2 + y^2 = 20$ **c.** The set of points *C* such that $\overline{AC} \perp \overline{BC}$, is represented by a circle centered at the origin with a radius of $\sqrt{20}$.

9. a. The car is traveling at an average speed

of $\frac{1}{4}$ mi/min. **b.** The car is stopped.

c. The car is traveling at an average speed

- of $\frac{1}{3}$ mi/min. **d.** The car is stopped.
- e. The car is traveling at an average speed
- of $\frac{1}{2}$ mi/min. **f.** The car is stopped.
- g. The car is traveling at 1 mi/min.