CHAPTERS 3 AND 4: 2-D KINEMATICS

Vectors

- Vectors have both magnitude and direction. We have encountered three vectors so far: displacement, velocity, and acceleration.
 - Always add them head to tail.
 - <u>Resultant</u>: the result of adding two vectors together.

Vectors

Vectors: Blue: Magnitude of 4 Red: Magnitude of 3

Breaking vectors apart into xand y- components

Resultant: 13 meters at an angle of 22.6° from the +x-axis

x-component:

- Magnitude:
- Direction:

y-component:

- Magnitude:
- Direction:

Draw vectors on the District Map from Home to AHS

http://www.avondale.k12.mi.us/district/district

Displacement Vectors at AHS Assignment

WS: Displacement vectors and Velocity vectors

PROJECTILE MOTION

Think about this...

If I fire a bullet and drop something from the same height at the same time, which one hits the ground first?

Mythbusters

https://www.youtube.com/watch?v=D9wQVIEdKh8

Independence of x- and ydirections

X- direction: The projectile has a constant horizontal velocity

– WHY?

y-direction: The projectile has a vertical velocity that changes due to the influence of the gravity.

Rya

How to solve projectile motion problems

Draw a diagram

Separate your x- direction and y- direction variables

Half Projectile Problem

You take a running leap off of a high dive platform. You were running at 2.8 m/s and you hit the water 2.6 seconds later. How high was the platform, and how far from the edge of the platform did you hit the water?

FULL PROJECTILE

Full Projectile Motion

- Launched at an angle
- What does that do to initial velocity in x- and ydirections?
- Start and end at same height

Velocity vectors

Acceleration vectors

Differences and Similarities

	Half Projectile		Full Projectile	
	Х	У	X	У
V ₀				
V				
а				
d				
t				

Full Projectile Problem

- Derek Dawson kicks a soccer ball from the ground with a velocity of 20 m/s at an angle of 30°.
- How long is the ball in flight?
- How far does it travel?
- How high does it go?

CIRCULAR MOTION

Centripetal force vs. Centrifugal force

- Centripetal force: center-seeking force. A force that pulls you towards the center.
- Centrifugal force: center-fleeing force. A force that pushes you away from the center.
- Only one exists: Which one do you think it is?

Centripetal force

Centripetal force, like the gravitational force in projectile motion, leads to an acceleration.

Demonstration

What happens when I take away centripetal acceleration?

Centripetal acceleration

The acceleration needed to keep an object moving around a circle of radius r at a velocity of v is:

$$a_c = \frac{v^2}{r}$$

Centripetal acceleration

- In circular motion, velocity and acceleration are always perpendicular to each other.
- This never leads to a change in speed, only a change in direction.

Problems

A car is traveling at 4 m/s when it is traveling around a curve with a radius of 25 m. What is the centripetal acceleration experienced by the car?

Problems

In order to create artificial gravity in space, some people have proposed a spinning space ship. If the ship has a radius of 100 meters, how fast does it have to spin to replicate gravity on Earth?

