ROBBINSVILLE PUBLIC SCHOOLS

OFFICE OF CURRICULUM AND INSTRUCTION

HIGH SCHOOL MATHEMATICS

PRE-CALCULUS

Board of Education

Mr. Scott Veisz, President Mr. Craig Heilman, Vice President Ms. Jane Luciano Ms. Shaina Ciacco Mrs. Sharon DeVito Mr. Vito Galluccio Ms. Lisa Temple Mr. Richard Young Mr. Christopher Emigholz Mr. Brian Betze, Superintendent Dr. Kimberly Tew, Assistant Superintendent Curriculum Writing Committee Morgan Sawin

> Supervisors Tiffany Brennan

BOARD OF EDUCATION INITIAL ADOPTION DATE:

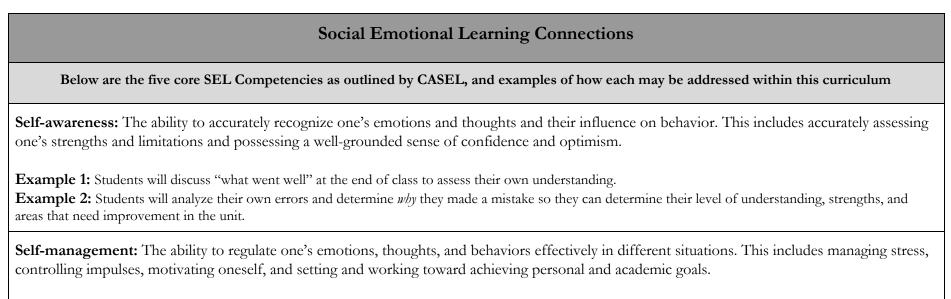
Course Philosophy

The New Jersey Core Curriculum Content Standards for Mathematics set a lofty goal for the mathematics curriculum when they state "all of our children, as well as our state and our nation, will be better served by higher expectations, by curricula that go far beyond basic skills and include a variety of mathematical models, and by programs which devote a greater percentage of instructional time to problem-solving learning." The Common Core Standards seek to narrow the focus and foster a coherent progression of skills and concepts across grade levels. In addition, the Common Core Standards require both mastery of conceptual understanding and procedural fluency. We seek to adopt these practices and share the nation's goal to enrich mathematics education.

It is our belief that the content of a mathematics course is brought to life for the student when it involves the student in investigating real-world applications using inductive and deductive reasoning while working cooperatively with others and communicating mathematically. This is reinforced by the use of technology and the use of real world data. In order to be competitive in today's global, information-based economy, students' mathematics experience must go beyond computation so that they are able to solve real problems, reason effectively, make logical connections, and think mathematically.

<u>The Principles and Standards for School Mathematics</u> published by the National Council of Teachers of Mathematics is a guiding document in the development and articulation of mathematics programs in Robbinsville. A central theme of this document is connections. According to <u>Principles and</u> <u>Standards</u>, "Students develop a much richer understanding of mathematics and its applications when they can view the same phenomena from multiple mathematical perspectives. One way to have students see mathematics in this way is to use instructional materials that are intentionally designed to weave together different content strands. Another means of achieving content integration is to make sure that courses oriented toward any particular content area (such as algebra or geometry) contain many integrative problems—problems that draw on a variety of aspects of mathematics, that are solvable using a variety of methods, and that students can access in different ways." (NCTM)

Through engagement in mathematics learning outlined in this curriculum, the students of Robbinsville Public Schools will acquire the mathematical skills, understandings and reasoning to be successful citizens of the world.


Course Description

Pre-Calculus Grade: 11-12 5 Credits Year Prerequisite(s): Grade of A or B in Algebra II

This college preparatory course covers all the fundamental topics that prepare students for calculus. Emphasis is on problem solving and the study of relations, functions, equation solving and graphing. The functions studied include polynomial, conics, rational, exponential, logarithmic, trigonometric, and inverse functions.

Core and Supplemental Instructional Materials

Core Materials	Supplemental Materials		
• Textbook	 Graphing websites (geogebra.com, desmos.com, etc.) Graphing calculator Online Resources Guided Notes Mimeo 		

Example 1: Students will have projects that will require steps and checkpoints. Completing the steps on time and remaining on task will require both self-motivation and regulation.

Example 2: Students will be given ample time in class to complete independent and group work. They must manage their time appropriately in order to keep up with the pace of the class.

Social awareness: The ability to take the perspective of and empathize with others from diverse backgrounds and cultures, to understand social and ethical norms for behavior, and to recognize family, school, and community resources and supports.

Example 1: Students will research other cultures and how different traditions and ways of life contribute to disease spread or population growth **Example 2:** Students will learn about each other's diverse backgrounds and where to go at school and in the community if they need support.

Relationship skills: The ability to establish and maintain healthy and rewarding relationships with diverse individuals and groups. This includes communicating clearly, listening actively, cooperating, resisting inappropriate social pressure, negotiating conflict constructively, and seeking and offering help when needed.

Example 1: Instruct students how to effectively communicate with the teacher when conflicts arise. For example, if there is a conflict with academics and extracurricular activities, they will learn to be proactive and discuss how to resolve the conflict with the teacher.Example 2: Students will work side by side with one another in order to discover theorems and solve problems

Responsible decision-making: The ability to make constructive and respectful choices about personal behavior and social interactions based on consideration of ethical standards, safety concerns, social norms, the realistic evaluation of consequences of various actions, and the well-being of self and others.

Example 1: Instruct students to embrace mistakes and not to criticize others when taking risks with new material **Example 2:** Teach students that every action, whether intentional or not, has consequences, and that they should be mindful of what they say and how they act around others

Educational Technology

Standards:(8.1.12.A.2, 8.1.12.A.5, 8.1.12.C.1, 8.1.12.F.1)

- <u>8.1.12.A.2 Select and use applications effectively and productively.</u> Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review.
- **<u>8.1.12.A.5 Select and use applications effectively and productively.</u> Create a report from a relational database consisting of at least two tables, describe the process, and explain the report results.**
 - <u>Example</u>: Students can electronically submit a slide presentation on a research topic of their choosing and present it to their peers and teachers. They must include at least two tables and three graphs in their presentation and use them to help explain their results.
- <u>8.1.12.C.1 Contribute to project teams to produce original works or solve problems</u> Develop an innovative solution to a real world problem or issue in collaboration with peers and experts, and present ideas for feedback through social media or in an online community
 - <u>Example</u>: Students discuss how disease can spread and how exponential growth is found in a real world setting. Students will research ways to reduce rates of infection and present ideas to the class.
- **<u>8.1.12.F.1 Plan and manage activities to develop a solution or complete a project.</u>** Evaluate the strengths and limitations of emerging technologies and their impact on educational, career, personal and/or social needs.
 - <u>Example</u>: Students can use online graphing tools to explore trigonometric, exponential, and logarithmic graphs. They can use these resources to transform parent functions and draw conclusions about the graphs and trends.

Career Ready Practices

Standards: (CRP1, CRP2, CRP4, CRP8, CRP11)

<u>CRP1</u>. Act as a responsible and contributing citizen and employee Career-ready individuals understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good.

Example: Students will demonstrate the responsibilities associated with being a member of a community when engaging collaboratively during sharing in pairs/trios, and participating in whole group discussions. Examples may include jigsaw and fishbowl activities.

<u>CRP2.</u> Apply appropriate academic and technical skills.

Example: Students will demonstrate the skills learned in PreCalculus when engaging collaboratively during sharing in pairs/trios and participating in whole group discussions. Examples may include jigsaw and fishbowl activities, as well as projects and formal assessments.

<u>CRP4.</u> Communicate clearly and effectively and with reason. Communication is a key factor in PreCalculus. Students are aware that their words and techniques they use to convey their thoughts are crucial to audience understanding.

Example: Students will demonstrate clear and effective communication through written and oral assignments and assessments.

<u>CRP8.</u> Utilize critical thinking to make sense of problems and persevere in solving them.

Example: Students will demonstrate critical thinking as they determine the best methods to solve free response and multiple choice problems.

<u>CRP11.</u> Use technology to enhance productivity.

Example: Students will use technology to enhance productivity on a regular basis as they use graphing calculators and other graphing software to complete calculus problems.

Robbinsville Ready 21st Century Skill Integration

The following skills will be embedded throughout the curriculum and instruction of this course.

Collaborative Team Member: Robbinsville students will learn more by working together than in isolation. As educational theorist Lev Vygotsky advocated, learning is a social process. Many workplaces today encourage employees to work in teams to solicit diverse perspectives, brainstorm new ideas and/or products, and solve problems. Further, collaboration fosters interpersonal relationships, self-management skills, cooperation, and a sense of collective responsibility. Collaborative team members are able to work with diverse groups of people who hold a variety of perspectives.

Effective Communicator: Robbinsville students must be able to clearly articulate their ideas orally, in writing, and across various media in order to successfully connect to the world around them. As the world becomes increasingly globalized, communication is more than just sharing one's ideas. Effective communicators are able to communicate their convictions, actively listen and analyze others' work to identify perspective and/or potential bias.

Emotionally Intelligent Learner: Robbinsville students who are emotionally intelligent learn to be empathetic, demonstrate integrity and ethical behavior, are kind, are self-aware, willing to change, and practice self-care. They are better able to cope with the demands of the 21st century digital society and workplace because they are reliable, responsible, form stable and healthy relationships, and seek to grow personally and professionally. Emotionally intelligent people are able to manage their emotions, work effectively on teams and are leaders who can grow and help to develop others.

Informed and Involved Citizen: Robbinsville students need to be digital citizens who are civically and globally aware. The concept of what it means to be "literate" has evolved along with 21st century technological and cultural shifts. Our progressive vision of literacy entails having our students explore real world problems in the classroom. Informed and involved citizens are able to safely and accurately communicate with people all around the world and are financially, environmentally and informationally literate.

Innovative Thinker: Robbinsville students must encompass innovative thinking skills in order to be successful lifelong learners in the 21st century world. As stated by Karl Fisch and Scott McLeod in the short film Shift Happens, "We are currently preparing students for jobs that don't yet exist ... using technologies that haven't been invented ... in order to solve problems we don't even know are problems yet." Innovative thinkers are able to think analytically, solve problems critically, creatively engage in curiosity and tinkering, and demonstrate originality.

Resilient and Self-Directed Learner: Robbinsville students need to take risks and ultimately make independent and informed decisions in an ever-changing world. Author of Life, the Truth, and Being Free, Steve Maraboli stated, "Life doesn't get easier or more forgiving, we get stronger and more resilient." Self-directed scholars of the 21st century are able to set goals, initiate resolutions by seeking creative approaches, and adjust their thinking in light of difficult situations. Resilient students are able to take risks without fear of failure and overcome setbacks by utilizing experiences to confront new challenges. Resilient and self directed scholars will consistently embrace opportunities to initiate solutions and overcome obstacles.

Robbinsville Public Schools Scope, Sequence, Pacing and Assessment

PreCalculus

				Asse	Assessments		
Unit Title	Unit Understandings and Goals	Recommended Duration/ Pacing	Formative	Summative	Common Benchmark Assessments (mid-course and end of course <u>only</u>)	Alternative Assessments (projects, etc. when appropriate)	
Unit 1: Functions and Their Graphs	 Relations and functions can be represented algebraically, numerically, and graphically. The domain of a function changes when two or more functions are graphically or algebraically combined or composed. A function and its inverse undo each other using the property that the input and output of function respectively become the output and input of an inverse function. The properties of functions and function operations are used to model and analyze real-world applications and quantitative relationships. 	9 blocks	Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Observations Exit Slips Quizzes Chapter Test	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge	

Unit 2: Polynomials, Quadratics, and Rational Functions	 There is a direct relationship between the graphs of polynomial and rational functions in terms of algebraically solving their equations when equal to zero. Technology allows us to approximate solutions easily, whereas solving for solutions algebraic gives us exact answers. We need to know when the difference between the two is relevant in a problem. 	9 blocks	Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Observations Exit Slips Quizzes	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge
Unit 3: Exponential and Logarithmic Functions	 Data that multiplies by a constant factor increases and decreases rapidly over time is represented by an exponential equation All exponential and logarithmic functions can be written in either exponential or logarithmic form Predictions for population, carbon dating, compound interest, and cooling are all examples of how exponential and logarithmic models are used to interpret real world data 	10 blocks	Chapter Test Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Observations Exit Slips Quizzes	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge

			Chapter Test			
Unit 4: Trigonometric Functions	 Periodic behavior is behavior that repeats over intervals of equal length. The measure of an angle is the input for two important functions called sine and cosine. You can translate periodic functions in the same way that you translate other functions. Sine, cosine, and tangent have reciprocals. 	12 blocks	Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Observations Exit Slips Quizzes	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge
Unit 5: Analytic Trigonometry	 Given the relationships between the six basic trigonometric functions, it is possible to simplify the trigonometric expressions, making it easier to work with for mathematical application. Mathematics is a study of patterns, and the goal of algebra and trigonometry is to simplify complex patterns into easy forms that are more manageable. Trigonometric identities are just an extension of this basic mathematical skill. 	9 blocks	Chapter Test Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Observations Exit Slips Quizzes	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge

Unit 6: Additional Topics in Trigonometry: Law of Sines/Law of Cosines	 Trigonometry goes i triangle. Sides and angles of a found, providing so problems. 		5 blocks	Chapter Test Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material)	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions
Unit 7:	• Trigonometry can b	e extended bevond	5 blocks	Observations Exit Slips Quizzes Chapter Test Unit Quizzes	Unit Test with	Cumulative Exam	Highlighting Prior Knowledge Application
Additional Topics in Trigonometry: Vectors	geometric applicatio areas, such as physic number system. Tri	ns into a variety of s and the complex gonometry can also be p non-rectangular or		Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Practice Material)	Varying Types of Questions Projects Authentic Assessments Core Assessments	Final Exam	Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions
				Observations Exit Slips Quizzes			Highlighting Prior Knowledge

Unit 8: Matrices	 We can use algebraic techniques to break down a complicated expression into smaller and more manageable parts. Knowing how to use matrices in the calculator can support algebraic techniques and make solving problems simpler. 	7 blocks	Unit Quizzes Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Practice Material) Observations Exit Slips Quizzes	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge
Unit 9: Conic Sections	 Conic Sections are formed when a plane intersects a cone. There are four types of curves known as conic sections: parabolas, circles, ellipses, and hyperbolas. Each curve has its own distinct shape and properties. Conic Sections reflect real-world phenomena. 	8 blocks	Chapter Test Open-Ended Questions Class Discussion In-class Assignments: (Group-work, Mini-Projects, Practice Material) Observations Exit Slips Quizzes Chapter Test	Unit Test with Varying Types of Questions Projects Authentic Assessments Core Assessments	Cumulative Exam Final Exam	Application Projects Graphing explorations Anticipatory Set/Warm Up Homework Quizzes Open-Ended Leading Questions Highlighting Prior Knowledge

Unit #1: Functions and Their Graphs

 Enduring Understandings: Relations and functions can be represented algebraically, numerically, and graphically. The domain of a function changes when two or more functions are graphically or algebraically combined or composed. 	 Essential Questions: What characteristics of a function are based on its domain? How is the domain affected when a function is algebraically manipulated? How do the parameters a, b, c and d of a transformed parent 			
 A function and its inverse undo each other using the property that the input and output of function respectively become the output and input of an inverse function. The properties of functions and function operations are used to model and analyze real-world applications and quantitative relationships. 	function affect the domain and range of a function?			
Interdisciplinary	Connections			
Literacy SL.9-10.1.B Collaborate with peers to set rules for discussions (e.g. informal consensus, taking votes on key issues, presentation of alternate views); develop clear goals and assessment criteria (e.g. student developed rubric) and assign individual roles as needed. Example: Students, when preparing and conducting peer and class error analysis, assign roles and set group norms for conducting respectful and constructive feedback.				

9.4.12.CT.2: Explain the potential benefits of collaborating to enhance critical thinking and problem solving *Example:* Students will work together to review prerequisite problems from the summer packet

Career/Real World Connections

Example: Functions are found all over the real world, anywhere there is an input and an output. Some examples include: A circle's circumference is a function of its diameter, the length of a person's shadow along the floor is a function of their height, and when driving a car, location is a function of time. Students will create functions based on real world quantitative relationships and examine their inverse relationships.

	g / Topical Questions Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
A-REI.B.	How can we use	Factor polynomials.	Administer pre-test and reflection.	Pre test and	Written test/quiz
4	factoring to simplify			reflection.	
	polynomials and	Divide polynomials using long and	Give a stations activity in which		Cooperative activities
A-APR.	rational expressions?	synthetic division.	students check answers to their	Summer packet	(rubrics)
D.6				answer key.	Notebooks

	What characteristics of	Simplify, multiply, and divide rational	packet and work on additional		
A-APR.	a graph should we be	expressions by factoring and reducing.	problems in their weak areas.	Videos on	Class participation
D.7	able to visually		•	chromebooks.	
	identify?	Identify key characteristics of graphs	Provide videos for students to look		Homework/written
F-IF.B.4		(domain, range, increasing interval,	up similar problems.	Additional practice	assignments
		decreasing interval, constant interval,		problems and	Response to discussion
		x-intercepts, y-intercept, maximum, and	Pair up students to work together	homework.	questions
		minimum) visually using interval notation	and guide each other.		
		where appropriate.			Anticipatory Sets/Do
			Work with small groups as needed.		Now Problems
A-APR.	What are the	Graph transformations of the parent	Anticipatory sets to measure	Worksheets and	Diagnostic
D.6	similarities and	functions including quadratic, square root,	background knowledge and engage	sample problems to	Assessments to
D.0	differences between	cubic, cube root, absolute value, greatest	students	analyze step-by-step	determine readiness
A-APR.	the parent functions?	integer and reciprocal functions.	students	solutions of the	Closure question/ Exit
D.7	the parent functions.	integer and recipioear functions.	Use guided and independent	problems	Slips
2.1	How do the	Graph piecewise functions.	practice activities	problems	onpo
F-IF.B.4	parameters a, b, c	1 1	1		Oral presentations
	and d affect the	Write the equation of a parent and	Use the Mimeo, whiteboard, and	Mimeo lessons	
	graph of a function?	piecewise functions based on a given	worksheets to reinforce the		Special projects
		graph.	concepts	www.desmos.com	
	How can one				
	function be created		Use cooperative learning activities	www.ixl.com	
	from several				
	functions on a		Use discovery based learning	Geometer's	
	specified domain?		activities that require students to	Sketchpad	
			make conjectures and investigate		
			patterns	GeoGebra	
			Use whiteboards to show	TI Smart View with	
			immediate feedback on questions	TI 84 Graphing	
			*	Calculators	
			Use colored pencils to visually		
			distinguish between the pieces of a		
			piecewise function.		

			0 1
F-IF.A.1	How can you find the	Determine the domain of a function	Same as above
F-IF.A.2	domain of a function	algebraically.	
F-IF.B.5	based on its algebraic		Have students first graph the
	properties?		problems to find the connection
			between the graphical and algebraic
			domain.
F-BF.A.	When two or more	Add, subtract, multiply, and divide two	Same as above
1b	functions are combined,	functions algebraically and for a specified	
	how does the domain of	value.	Use color to reinforce the
F-BF.A.	the combined function		difference between the inner and
1c	change from the domain	State the domain of a combined function.	outer function
	of the individual		
	functions?	Compose functions algebraically and for a	Create metaphors to describe the
		specified value.	idea of a composition
	What notation is used to	-	-
	specify how to combine	State the domain of a composite function.	
	and compose functions	*	
	algebraically and		
	numerically?		
F-BF.B.	What is the relationship	Find the inverse of a function algebraically.	Same as above
4a	between a function and		
	its inverse?	Determine if the inverse of a given function	Create a function. Find its inverse
F-BF.B.		is a function using the horizontal line test.	and use the composition test to
4b			verify your answer.
		Prove functions are inverses using	
		compositions.	

Unit #2: Polynomials, Quadratics, and Rational Functions

Enduring Understandings:		Essential Questions					
• There is a direct relationship betwee	There is a direct relationship between the graphs of polynomial and rational • How are the techniques for solving a quadratic applied to solving						
functions in terms of algebraically	functions in terms of algebraically solving their equations when equal to zero. polynomial or rational function?						
• Technology allows us to approxim	ate solutions easily, whereas solving for	• What are the relationships be	etween the graphs of dif	ferent			
solutions algebraic gives us exact a	nswers. We need to know when the	polynomial and rational functions?					
difference between the two is relev							
	Interdisciplinary	Connections					
Tech 8.2.12.A.3 The relationships amo	ong technologies and the connections between	technology and other fields of study					
Example: Students will use technology	to graph multiple function types and analyze, c	compare and contrast the graphs					
-							
9.3.12.BM-MGT.2 Access, evaluate, a	nd disseminate information for business decision	ion making.					
Example: Students will access, evaluate,	, and disseminate information given by polynomial	mials to optimize profit for businesses					
-							
	Career/Real World	l Connections					
Example: Since polynomials are used	to describe curves of various types, people use	e them in the real world to graph curve	es. For example, roller co	oaster designers			
	arves in their rides. Additionally, polynomials a	~ *	*	~			
	variation in the real world. From anesthesia to	- · · · · · · · · · · · · · · · · · · ·	· · ·				
predict outcomes.							
<u>+</u>							
Guiding / Topical Questions with Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and	Assessment			

	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Resources and Materials	Assessment Strategies
A-REI.	How can you use the Zero	Find the zeros of quadratics by factoring,	Anticipatory sets to measure	Worksheets and	Written test/quiz
B.4 A-SSE	Product Property to find solutions of quadratic equations?	completing the square or using the quadratic formula.	background knowledge and engage students	sample problems to analyze step-by-step solutions of the	Cooperative activities (rubrics)
.B.3a N-CN.	What methods are necessary to completely	Find the zeros of polynomials algebraically, by factoring or using synthetic or long division.	Use guided and independent practice activities	problems Textbook &	Notebooks Class participation
C.9 A-AP R.B.2	factor a higher order polynomial function?	Apply the Upper and Lower Bound Theorems, Descartes Rule of Signs,	Use the Mimeo, whiteboard, and worksheets to reinforce the concepts	associated materials Teacher created worksheets	Homework/written assignments

	How many solutions can a quadratic equation have? What type are they?	Rational Root Theorem on polynomials to find zeros algebraically Apply the Fundamental Theorem of Algebra to graph and write equations of polynomials	Use cooperative learning activities Use discovery based learning activities that require students to make conjectures and investigate patterns Use whiteboards to show immediate feedback on questions	www.ix1.com Mimeo lessons Geometer's Sketchpad GeoGebra TI Smart View with TI 84 Graphing Calculators	Response to discussion questions Anticipatory Sets/Do Now Problems Diagnostic Assessments to determine readiness Closure question/ Exit Slips
N-CN. C.7	What patterns emerge when determining complex roots of a polynomial?	Find imaginary zeros of a polynomial or quadratic. Use the complex conjugate theorem to find remaining zeros of polynomials.	Same as above		Oral presentations Special projects
F-IF.C .7c F-IF.C .8a A-AP R.B.3	How does the degree and leading coefficient of a polynomial affect the shape of the graph of the function? How does the multiplicity of the zeros or factors of a function affect the graph of the function?	Find the x intercept(s), y intercept, and end behavior of polynomials. Graph polynomials. Write equations of polynomials based on a graph or given characteristics.	Same as above Provide a template to assist with organization.		
F-IF.C .7d	What are the six characteristics of rational functions that help us to create their graphs? How are they found?	Determine vertical, asymptotes, horizontal or slant asymptotes, zero(s), y intercept, and removable discontinuities of rational functions. Graph rational functions. Write equations of rational functions based on a graph or given characteristics.	Same as above Use prompts as to what criteria needs to be found for rational functions. Create flashcards with instructions on how to find each characteristic of a rational function and use them to quiz each other.		

			Provide a template to assist with organization.	
A-REI. D.11	What real world scenarios represent asymptotes in word	Solve word problems that are modeled by rational functions.	Same as above	
A-REI. A.2	problems?	Use the calculator to solve rational and	Use leveled practice activities	
		polynomial word problems using the intersect, zero, max/min, and value feature.		

Unit #3: Exponential and Logarithmic Functions

 Data time All e or lo Pred are a 	is represented by an exponer xponential and logarithmic for garithmic form ictions for population, carbo	factor increases and decreases rapidly over ntial equation unctions can be written in either exponential n dating, compound interest, and cooling ial and logarithmic models are used to	 Essential Questions What are the characteristics of exponential and logarithmic models? How can you tell if the exponential or logarithmic form of a function is needed to solve a problem? When and how are exponential and logarithmic models used in everyday life? 		
		Interdisciplinary imulation to model the impact of proposed sol			
Example: Science human a Example: Example	Students will graph exponen HS-ESS3-6 Use a computate ctivity (i.e., climate change). Students will study the sprea e: Coronavirus is a global par	stems relevant to the problem. tial functions and discuss the real world factors tional representation to illustrate the relationship d of disease to a population as exponential gro Career/Real World ademic that exemplifies exponential growth. Here is to see how their behavior changed the course	ps among Earth systems and how thos wth, and how human activity can affec d Connections Iuman behavior, among other factors,	et spread	
	ng / Topical Questions h Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
F-BF. B.3 A-SSE	What is the difference between the graphs of exponential growth and decay? What graphical	Graph transformations of exponential functions. Graph transformations of logarithmic	Anticipatory sets to measure background knowledge and engage students	Worksheets and sample problems to analyze step-by-step solutions of the	Written test/quiz Cooperative activities (rubrics)
.B.3c	properties do both exponential growth and	functions.	Use guided and independent practice activities	problems	Notebooks
F-IF.C .7e	exponential decay share?	Find the intercepts and other characteristics of exponential and logarithmic	Use the Mimeo, whiteboard, and	Textbook & associated materials	Class participation

worksheets to reinforce the

concepts

functions.

How do the

transformation rules affect

Homework/written assignments

F-LE. A.3	the graphs of exponential and logarithmic functions?		Use cooperative learning activities	Teacher created worksheets	Response to discussion questions
	How is a logarithmic graph related to an exponential graph?		Use discovery based learning activities that require students to make conjectures and investigate patterns Use whiteboards to show immediate feedback on questions Compare and contrast summary of	www.desmos.com www.ixl.com Mimeo lessons Geometer's Sketchpad	questions Anticipatory Sets/Do Now Problems Diagnostic Assessments to determine readiness Closure question/ Exit Slips
			exponential versus logarithmic graphs and their characteristics.	GeoGebra TI Smart View with TI 84 Graphing	Oral presentations Special projects
A-SSE .B.3c F-BF. B.5	How are exponential functions written in logarithmic form and vice versa? How are the properties of logarithmic functions related to the properties of	Convert between exponential and logarithmic form. Evaluate logarithms without a calculator. Condense and expand logarithms using their properties.	Same as above Split up the class into groups based on readiness. Work with a small group while the other group works with each other.	Calculators Same as above SAT 2 property problems	
F-LE. A.4	exponents? What are the different ways of solving exponential and logarithmic equations? How can you use the form of an exponential or logarithmic equation to determine the algebraic solving strategy?	Solve exponential and logarithmic equations. Apply algebraic techniques to solving exponential and logarithmic problems.	Same as above Classify types of exponential and logarithmic solving problems by solving technique.		

				1
A-REI.	Given a set of data, how	Interpret an exponential model through the	Same as above	
D.11	can you represent the data	context of a word problem.		
	with a mathematical model		Use expert jigsaw to have groups	
F-IF.C	both algebraically and	Create exponential models (growth and	solve a word problem and teach	
.8b	using technology?	decay) and logarithmic models for real	another group their solution.	
	0 0,	world applications and use them to solve	0 1	
A-CE	How can you create	problems.		
D.A.1	exponential or logarithmic	problems.		
	models from word	Solve exponential and logarithmic word		
F-BF.	problems? How can you	· 0		
A.1b	1	problems as a system of equations using		
	use solving techniques to	technology to find the point of intersection.		
F-LE.	solve for the missing			
B.5	variable in the problem?			
D.5				
	How can you verify			
	algebraic techniques for			
	solving exponential			
	equations using			
	technology?			
S-ID.B	What determines if a	Compare and contrast linear models,	Same as above	
.6a	mathematical model	quadratic, and exponential models.		
	should be linear, quadratic,	1		
S-ID.C	or exponential?	Find and interpret the average rate of		
.8	or exponential.	change in the context of a real world		
.0	What is another word for	problem using linear, quadratic, and		
F-IF.B				
	average rate of change?	exponential models.		
.6	TT 1 1 1			
	How and why is the			
	average rate of change			
	different based on the			
	model chosen and the			
	parameters used?			

Unit #4: Trigonometric Functions

Enduring Understandings:	Essential Questions
• Periodic behavior is behavior that repeats over intervals of equal length.	• How can the unit circle be used to calculate the six trigonometric
• The measure of an angle is the input for two important functions	functions?
called sine and cosine.	• How can you model periodic behavior?
• You can translate periodic functions in the same way that you translate other	• What information does a trigonometric function provide of its graph?
functions.	• If you know the value of sin, how can you find the values of all of the
• Sine, cosine, and tangent have reciprocals.	other trigonometric functions at that same angle?
Interdisciplinary	Connections
Tech HS-ETS1-4. Use a computer simulation to model the impact of proposed sol on interactions within and between systems relevant to the problem.	utions to a complex real-world problem with numerous criteria and constraints
on interactions within and between systems relevant to the problem. <i>Example:</i> Students will graph trigonometric functions on the computer	
on interactions within and between systems relevant to the problem. <i>Example:</i> Students will graph trigonometric functions on the computer 9.3.12.ED.2 Demonstrate effective oral, written, and multimedia communication in	multiple formats and contexts.
on interactions within and between systems relevant to the problem. <i>Example:</i> Students will graph trigonometric functions on the computer 9.3.12.ED.2 Demonstrate effective oral, written, and multimedia communication in <i>Example:</i> Students will derive special trig values a number of ways, including using s	multiple formats and contexts. special right triangles, the unit circle, and several shortcuts
on interactions within and between systems relevant to the problem. <i>Example:</i> Students will graph trigonometric functions on the computer 9.3.12.ED.2 Demonstrate effective oral, written, and multimedia communication in	multiple formats and contexts. special right triangles, the unit circle, and several shortcuts

architecture, cartography, computer graphics, machining, meteorology, music theory, oceanography, phonetics, seismology, and statistics.

	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
F-TF.	What is a radian	Convert between degree and radian	Anticipatory sets to measure	Worksheets and	Written test/quiz
A.1	measure?	measure.	background knowledge and engage	sample problems to	
			students	analyze step-by-step	Cooperative activities
F-TF.	How do you convert	Use angles to model and solve real world		solutions of the	(rubrics)
A.2	between degrees and	problems.	Use guided and independent	problems	Notebooks
C SD	radians?	Enclared this and matrix for a times of a set	practice activities	$T_{+} = -1$	
G-SR		Evaluate trigonometric functions of acute		Textbook &	Class participation
T.C.6	How do trigonometric	angles.	Use the Mimeo, whiteboard, and	associated materials	
	functions relate to right		worksheets to reinforce the		Homework/written
	angles?		concepts	www.ixl.com	assignments

G-SR		Use a calculator to evaluate trigonometric			
T.C.8	What is special about the trigonometric	functions.	Use cooperative learning activities	Teacher created worksheets	Response to discussion questions
	functions of 30, 45, and 60-degree angles?	Use the fundamental trigonometric identities.	Use discovery based learning activities that require students to make conjectures and investigate	Mimeo lessons	Anticipatory Sets/Do Now Problems
	How does each trigonometric function relate to the others?	Solve real-world problems using trigonometric functions.	Use whiteboards to show immediate feedback on questions	Geometer's Sketchpad GeoGebra	Diagnostic Assessments to determine readiness
F-TF. A.2	What is a unit circle?	Identify a unit circle and describe its relationship to real numbers.	Same as above	TI Smart View with	Closure question/ Exit Slips
	How do special right triangles help	Create a unit circle.	Give students blank unit circles to fill out as do-nows.	TI 84 Graphing Calculators	Oral presentations
F-TF. A.3	determine measures on the unit circle?	Use special right triangles to determine values of trigonometric functions on the	Partner practice activities on evaluating trigonometric functions.	www.desmos.com	Special projects
F-TF.	How does the unit	unit circle.			
A.4	circle make it easier to determine values of trigonometric functions?	Evaluate trigonometric functions using the unit circle.	Emphasize connections between items on the unit circle to minimize memorization.		
F-TF. A.2	In what way do the coordinates on the unit circle differ based on which quadrant they are	Determine which trigonometric functions are negative in each quadrant. Evaluate trigonometric functions of any	Same as above		
F-TF. A.3	in?	angle.			
F-TF. A.4	Can the coordinates in each quadrant determine how each trigonometric function is affected between different angles?	Find reference angles.			

F-TF.	How can the sine and		Company of the serve	
		Sketch the parent graphs of the sine and	Same as above	
B.5	cosine functions be	cosine functions.		
	graphed using the unit		Provide a template for critical	
	circle?	Use amplitude and period to sketch graphs	information.	
		of sine and cosine functions.		
	What does it mean for a		Display parent graphs on a word	
	function to have	Graph reflections, midline, and phase shift	wall.	
	continuous cycles?	translations of sine and cosine functions.		
			Give stations with leveled difficulty	
	How do the constants in	Solve real-life problems involving	of problems.	
	sin and cosine equations	directional bearings.	_	
	affect what the graph	Ŭ	Describe characteristics of the	
	looks like?	Solve real-life problems involving harmonic	graphs in real world language	
		motion.	(uphill, downhill, flipped out, etc.)	
	How many ways can sine			
	and cosine by translated?			
	How are the sine and			
	cosine graphs related?			
	cosine graphs related.			
	What real world			
	applications do sine and			
	cosine functions have?			
F-TF.	How can the secant and	Skotah the negative symples of the second and	Same as above	
		Sketch the parent graphs of the secant and	Same as above	
B.5	cosecant functions be	cosecant functions.		
	graphed using the unit		Provide a template for critical	
	circle?	Use amplitude and period to sketch graphs	information.	
		of secant and cosecant functions.		
	How do the constants in		Display parent graphs on a word	
	secant and cosecant	Graph reflections, midline, and phase shift	wall.	
	equations affect what the	translations of secant and cosecant		
	graph looks like?	functions.	Give stations with leveled difficulty	
			of problems.	
	How many ways can	Solve real-life problems involving		
	secant and cosecant be	directional bearings.	Describe characteristics of the	
	translated?		graphs in real world language	
		Solve real-life problems involving harmonic	(uphill, downhill, flipped out, etc.)	
		motion.		

	How are the secant and		
	cosecant graphs related?		
	How are the secant and		
	cosecant graphs related to		
	the sine and cosine		
	graphs?		
	01		
F-TF.	How can the tangent and	Sketch the parent graphs of the tangent and	Same as above
B.5	cotangent functions be	cotangent functions.	
	graphed using the unit		Provide a template for critical
	circle?	Use amplitude and period to sketch graphs	information.
		of tangent and cotangent functions.	
	What differences do the		Display parent graphs on a word
	tangent and cotangent	Graph reflections, midline, and phase shift	wall.
	graphs have to the other	translations of tangent and cotangent	
	trigonometric functions?	functions.	Give stations with leveled difficulty
			of problems.
	How do the constants in	Solve real-life problems involving	
	tangent and cotangent	directional bearings.	Describe characteristics of the
	equations affect what the	Ŭ	graphs in real world language
	graph looks like?	Solve real-life problems involving harmonic	(uphill, downhill, flipped out, etc.)
	01	motion.	
	How many ways can		
	tangent and cotangent be		
	translated?		
	How is the tangent and		
	cotangent graph related?		
F-TF.	How can trigonometric	Evaluate and graph inverse trigonometric	Same as above
B.7	functions be inverted?	functions.	Construct a chart of which
D . <i>i</i>		runcuons.	quadrant applies to which inverse
	What does an inverse	Solve real world problems using inverse	trigonometric function.
	trigonometric function	Solve real world problems using inverse trigonometric functions.	ungonometric function.
	0	ingonometric functions.	Delate the graph of the increase
	help you find?		Relate the graph of the inverse
		· 0	1 · · ·
		tunctions.	using.
	help you lind.	Evaluate compositions of trigonometric functions.	function to the quadrants you are using.

Unit #5: Analytic Trigonometry

Endurin	nduring Understandings: Essential Questions:						
• Given the relationships between the six basic trigonometric functions, it			• How can you identify and model periodic behavior?				
is possib	le to simplify the trigonomet	ric expressions, making it easier to work	• How can you verify trigonometric functions as an identity?				
with for	mathematical application.		• How are trigonometric ident	tities used to solve equat	ions?		
•	Mathematics is a study of pat	terns, and the goal of algebra and		*			
		patterns into easy forms that are more					
managea	ble. Trigonometric identities	are just an extension of this basic					
mathem	atical skill.						
		Interdisciplinary					
-		aluate information presented in diverse media a	<u> </u>	atively, and orally.			
Example.	: Students will use previously	learned identities to solve problems presented	in new ways.				
-	· · · · · · · · · · · · · · · · · · ·	er's point of view, reasoning, and use of eviden					
Example	: Students will discuss differen	nt ways to solve the same problem, and determine	ine the best method when appropriate				
		Career/Real World	d Connections				
-		problem solving skills in this unit while collabor	÷ .		ficient method		
for solvi	ng and reason with their peer	s about each method. These are skills that they	will need in any future job when work	ang with coworkers.			
	(H) 10 1	1		T 1			
	ng / Topical Questions	Content, Themes, Concepts, and Skills		Instructional	Assessment		
wi	th Specific Standards		Teaching Strategies	Resources and	Strategies		
A COT	XX71		A	Materials	_		
A-SSE	What is a trigonometric	Simplify trigonometric expressions using	Anticipatory sets to measure	Worksheets and	Written test/quiz		
.A.1a	identity?	trigonometric identities.	background knowledge and engage	sample problems to	Cooperative activities		
A-SSE	TT 11		students	analyze step-by-step	(rubrics)		
.A.1b	How can we use problem	Apply algebraic techniques to trigonometric	** *1 1 1 1 1	solutions of the			
1 001	solving skills to transform	expressions.	Use guided and independent	problems	Notebooks		
A-SSE	trigonometric expressions		practice activities				
.A.2	using identities?	Describe the trigonometric identities.		Textbook &	Class participation		
			Use the Mimeo, whiteboard, and	associated materials			
F-TF.			worksheets to reinforce the		Homework/written		
C.8			concepts	www.ixl.com	assignments		

			Use cooperative learning activities Use discovery based learning activities that require students to make conjectures and investigate patterns Use whiteboards to show immediate feedback on questions Administer puzzle proofs. Have students see, say, and write the trigonometric identities to memorize them. Create a checklist of simplifying strategies on a word wall	Teacher created worksheets Mimeo lessons TI Smart View with TI 84 Graphing Calculators Send a Problem Matching Game	Response to discussion questions Anticipatory Sets/Do Now Problems Diagnostic Assessments to determine readiness Closure question/ Exit Slips Oral presentations Special projects
A-SSE .A.1a A-SSE .A.1b	How can we use problem solving skills to transform trigonometric expressions using identities?	Verify trigonometric identities.	Same as above. Administer puzzle proofs.		
A-SSE .A.2 F-TF.			Create a checklist of simplifying strategies on a word wall		
C.8 A-SSE .A.1a A-SSE .A.1b A-SSE .A.2 F-TF. B.7	How can we use properties of inverse trigonometric functions and the unit circle to determine the angles that satisfy the trigonometric equations?	Solve trigonometric equations over a general and specified interval. Solve trigonometric equations with a multiple angle as an input. Apply algebraic techniques to solving trigonometric equations.	Same as above. Use a send a problem partner activity Show how the algebraic solution to equations is represented graphically		

	Can there be more than one solution to trigonometric equations? What are the strategies for solving trigonometric	Use inverses to solve trigonometric equations for values that are not defined on the unit circle.	
	equations?		
A-SSE	How are trigonometric	Apply the sum and difference identities to	Same as above.
.A.2	identities used to simplify	simplifying and verifying problems.	
F-TF.	and solve equations?		Administer a matching game
B.7		Evaluate trigonometric expressions	between the problem and solution
	How can we use sum and	numerically using sum and difference	to sum and difference problems
F-TF.	difference identities to	identities.	*
C.9	evaluate trigonometric		
	functions that are not on	Solve trigonometric equations using sum	
	the unit circle?	and difference identities.	

Unit #6: Additional Topics in Trigonometry: Law of Sines/Law of Cosines

Enduring Understandings:	Essential Questions					
• Trigonometry goes beyond the right triangle.	• How are oblique triangles solved using the law of sines and law of					
• Sides and angles of all triangles can be found, providing solutions to	cosines?					
real-world problems.	• In a real world situation, how can the law of sines and law of cosines be					
	used?					
Interdisciplin	ary Connections					
9.4.12.CT.1: Identify problem-solving strategies used in the development of an innovative product or practice <i>Example:</i> Students will have to determine how to solve the ambiguous case and how many triangles are possible						
a question or solve a problem.	RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.					
Example: Many mathematical applications of Law of Sines and Law of Cosines ar	e given in word problem form and students must interpret the writing assign variables,					
and then solv	and then solv					
Career/Real W	orld Connections					

Example:Many real-world applications involve oblique triangles, where the Law of Sines and Cosines can be used to find certain measurements. The Law of Cosines is used to find a side, given an angle between the other two sides, or to find an angle given all three sides. For all other questions, the Law of Sines can be used.

	ng / Topical Questions h Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
G.SRT	What is an oblique	Use the law of sines to solve oblique	Anticipatory sets to measure	Worksheets and	Written test/quiz
.D.11	triangle? How can we solve	triangles (AAS or ASA). Use the law of sines to solve oblique	background knowledge and engage students	sample problems to analyze step-by-step solutions of the	Cooperative activities (rubrics)
	missing sides and angles of an oblique triangle?	triangles (SSA).	Use guided and independent practice activities	problems	Notebooks
	How can a triangle have	Use the law of sines to solve real world problems, including problems with	Use the Mimeo, whiteboard, and	Textbook & associated materials	Class participation
	no solution?	bearings.	worksheets to reinforce the concepts	Teacher created	Homework/written assignments
	How can a triangle have two solutions?	Find the area of an oblique triangle using the law of sines.	Use cooperative learning activities	worksheets www.ixl.com	Response to discussion questions
			Use discovery based learning activities that require students to make conjectures and investigate	Mimeo lessons	Anticipatory Sets/Do Now Problems
			patterns	Geometer's Sketchpad	Diagnostic Assessments to determine readiness
			Use whiteboards to show immediate feedback on questions	GeoGebra	Closure question/ Exit Slips
			Create a chart of all possible	TI Smart View with	51105
			triangles and the strategy to solve them.	TI 84 Graphing Calculators	Oral presentations
			Create leveled stations on solving word problems.		Special projects

G.SRT	How can we find angles	Use the law of cosines to solve oblique	Same as above	
.D.11	of a triangle using only	triangles (SSS or SAS).		
	its side lengths?			
		Use the law of cosines to solve real-world		
	How can the law of	problems.		
	cosines be used to find			
	the area of a triangle?	Use Heron's Area Formula to find areas of		
		triangles.		

Unit #7: Additional Topics in Trigonometry: Vectors

Enduring Understandings:	Essential Questions					
• Trigonometry can be extended beyond geometric applications into a variety	• How is trigonometry used in other fields of math and science?					
of areas, such as physics and the complex number system. Trigonometry can						
also be used to help develop non-rectangular or function graphing systems.						
Interdisciplinary	Connections					
Sci HS-PS2-1. Analyze data to support the claim that Newton's second law of motion	on describes the mathematical relationship among the net force on a					
macroscopic object, its mass, and its acceleration.	macroscopic object, its mass, and its acceleration.					
Example: Students will use vectors to model motion of an object						
Science HS-ESS2-3 Develop a model based on evidence of Earth's interior to	describe the cycling of matter by thermal convection.					
Example: Students will use vectors to show flow of materials such as lava, water, or	weather patterns					
Cancer / Beal W/ad	Career/Real World Connections					
Career/ Real work	u Connections					
Example: Vectors are used to show both magnitude and direction in the real world and are often used to graphically represent weather patterns						

	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
N-VM. A.1	What are the characteristics of vectors?	Sketch a vector on the coordinate plane.	Anticipatory sets to measure background knowledge and engage students	Worksheets and sample problems to analyze step-by-step	Written test/quiz Cooperative activities
	How is a vector represented graphically?	Write a vector in component form given the initial and terminal point or a graph.	Use guided and independent practice activities	solutions of the problems	(rubrics) Notebooks

N-VM.		Find the magnitude of vectors.		Textbook &	Class participation
A.2			Use the Mimeo, whiteboard, and	associated materials	
11.2		Find the direction angle of a vector.	worksheets to reinforce the		Homework/written
			concepts	Teacher created	assignments
N-VM.				worksheets	Response to discussion
B.4c			Use cooperative learning activities		questions
D.40				www.ixl.com	*
			Use discovery based learning		Anticipatory Sets/Do
			activities that require students to	Mimeo lessons	Now Problems
			make conjectures and investigate		Diagnostic
			patterns	Geometer's	Assessments to
				Sketchpad	determine readiness
			Use whiteboards to show		
			immediate feedback on questions	GeoGebra	Closure question/ Exit
			Show what is a vector video clip	TI Smart View with	Slips
			from Despicable Me	TI 84 Graphing	Oral presentations
			from Despicable Me	Calculators	Of al presentations
			Give guided reading homework on	Calculators	Special projects
			vocabulary from the unit	http://illuminations.	
N-VM.	How can vectors be	Apply the arithmetic of vectors as related to	Same as above	nctm.org/Activity.as	
B.4a	represented in different	trigonometry, both graphically and		px?id=3536	
D.4a	ways?	numerically		*	
N-VM.					
	In what ways are unit	Determine the unit vector of a vector			
B.4b	vectors similar to the				
N-VM.	unit circle?	Write vectors as linear combinations			
B.4c	How can vectors be	Find the Dot Product of two vectors			
	added and subtracted				
	graphically?	Find the angle between two vectors			
	0				
N-VM.	How are vectors used to	Solve application problems involving	Same as above		
A.3	represent real world	velocity using vectors.			
11.5	situations?				
		1		1	1

Unit #8: Matrices

Enduring Understandings:	Essential Questions
• We can use algebraic techniques to break down a complicated expression	• How can we use matrices to solve real world problems?
into smaller and more manageable parts.	• What are the pros and cons of using matrices to solve problems?
• Knowing how to use matrices in the calculator can support algebraic	
techniques and make solving problems simpler.	
Interdisciplin	ary Connections
Tech 8.1.12.E.1 Evaluate and select information sources and digital tools based	on the appropriateness for specific tasks.
Example: Students will use technology to set up and solve matrices when approp	priate
• • • • • • • • • • • • • • • • • • • •	h that listeners can follow the line of reasoning and the organization, development,
and style are appropriate to task, purpose, and audience	
Example: Students will determine when systems of equations should be solved gr	aphically, algebraically, or using matrices
Career/Real W	Vorld Connections
Example: Systems of equations in the real world (such as business or science) a	re often so complicated and full of variables that they cannot be solved by hand.

	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
N-VM.	How can we perform	Add, subtract, and perform scalar	Anticipatory sets to measure	Worksheets and	Written test/quiz
C.6	matrix operations by hand	multiplication on matrices	background knowledge and engage	sample problems to	
	and using the calculator?		students	analyze step-by-step	Cooperative activities
		Represent data using a matrix		solutions of the	(rubrics)
N-VM.	How are matrices used to		Use guided and independent	problems	Notebooks
C.7	organize information?	Solve scalar word problems using matrices	practice activities		TOLEBOOKS
C.7				Textbook &	Class participation
			Use the Mimeo, whiteboard, and	associated materials	
			worksheets to reinforce the		Homework/written
N-VM.			concepts	Teacher created	assignments
C.8				worksheets	D . 1' '
			Use cooperative learning activities		Response to discussion
A-REI				www.ixl.com	questions
.C.8					

A-REI			Use discovery based learning activities that require students to	Mimeo lessons	Anticipatory Sets/Do Now Problems
.C.9			make conjectures and investigate patterns	Geometer's Sketchpad	Diagnostic Assessments to
			Use whiteboards to show	GeoGebra	determine readiness
			immediate feedback on questions	TI Smart View with TI 84 Graphing	Closure question/ Exit Slips
N-VM.	When can matrices be	Multiply matrices using the calculator	Same as above	Calculators	Oral presentations
C.9	multiplied?	Find the inverse of matrix using the	Have students self discover which		Special projects
N-VM.	What properties of real numbers are maintained	calculator	matrices can be multiplied using examples		
C.10	through matrix	Determine which algebraic properties hold	examples		
	operations?	true for matrix operations.	Have students discover and/or		
			prove which properties are true		
N-VM. C.6	How can we use matrices to solve real world	Solve systems of equations in up to three variables using matrices in the calculator	Same as above		
A.REI. C.8	problems that can be represented through a system of equations in two	Recognize special cases for solutions of systems of equations	Expert jigsaw on practice problems the second day		
0.0	or more variables?		Make a summary chart of the		
A.REI. C.9		Solve real world problems using matrices	special cases		
A.SSE. B.3	What is partial fraction decomposition?	Write the partial fraction form for the decomposition of a rational function	Same as above		
			Match the decomposition to the		
		Solve for the constants using matrices in partial fraction decomposition	original problem		
			Emphasize vocabulary to review the rules		
			Show both algebraic and technological ways of solving		

Unit #9: Conic Sections

Essential Questions				
• How is each conic section related to a cone?				
• What properties does an equation have to graph a circle, ellipse, parabola,				
and hyperbola?				
• What applications can be drawn for the analysis of conic graphs?				
ry Connections				
NJSLSA.SL2. Integrate and evaluate information presented in diverse media and formats, including visually, quantitatively, and orally.				
Example: Students will graph and/or describe conic sections given an equation, description, or graph.				
Tech 8.2.12.A.3 The relationships among technologies and the connections between technology and other fields of study				
<i>Example:</i> Students will use technology to graph multiple conic functions function types and analyze, compare and contrast the graphs given the equations				
Career/Real World Connections				

parabola. Hyperbolic as well as parabolic mirrors and lenses are used in systems of telescopes.

	ng / Topical Questions th Specific Standards	Content, Themes, Concepts, and Skills	Teaching Strategies	Instructional Resources and Materials	Assessment Strategies
GGP	What are the	Recognize a conic as the intersection of a	Anticipatory sets to measure	Worksheets and	Written test/quiz
E.A.1	characteristics of a circle?	plane and a double-napped cone.	background knowledge and engage students	sample problems to analyze step-by-step	Cooperative activities
		Write equations of circles in standard form		solutions of the	(rubrics)
	How can we identify an equation as a circle	given characteristics of the circle.	Use guided and independent practice activities	problems	Notebooks
	equation?	Sketch a circle using its equation.	Use the Mimeo, whiteboard, and	Textbook & associated materials	Class participation
	How do we find the	Complete the square to write the equation	worksheets to reinforce the		Homework/written
	center and radius of a circle?	of a circle from general to standard form.	concepts	Teacher created worksheets	assignments
		Model and solve real world situations using circle equations.	Use cooperative learning activities	www.ixl.com	Response to discussion questions

			Use discovery based learning activities that require students to make conjectures and investigate patterns Use whiteboards to show	Mimeo lessons Geometer's Sketchpad	Anticipatory Sets/Do Now Problems Diagnostic Assessments to determine readiness
			immediate feedback on questions	GeoGebra	Closure question/ Exit Slips
			Review completing the square on prior homework.	TI Smart View with TI 84 Graphing	Oral presentations
			Video on all four types of conic sections.	Calculators	Special projects
G.GP	What are the	Write equations of ellipses in standard	Same as above		
E.A.3	characteristics of an ellipse?	form. Complete the square in quadratic equations	Give partner practice on ellipse and circle problems in which each		
	How can we identify an equation as an ellipse	to write the equation of the ellipse from general to standard form.	partner has the other's answers.		
	equation?	Sketch an ellipse using its equation.	Create an ellipse using a string.		
	How do we find the				
	center, foci, and axes of an ellipse?	Find eccentricity of an ellipse.			
	-	Model and solve real world situations using elliptical equations.			
G.GP E.A.3	What are the characteristics of a	Write equations of hyperbolas in standard form given its characteristics.	Same as above		
12.71.9	hyperbola?		Give partner practice on ellipse		
	II	Complete the square on quadratic equations	and circle problems in which each		
	How can we identify an equation as an ellipse	to write the equation of the hyperbola from general to standard form.	partner has the other's answers.		
	equation?	Find the asymptotes of a hyperbola.	Compare and contrast the ellipse and hyperbola formulas and		
	What are the similarities and differences between	Sketch a hyperbola using its equation.	characteristics.		
	a hyperbola and an ellipse?	Find eccentricity of a hyperbola.			

	How do we find the center, foci, and axes of a hyperbola?	Model and solve real world situations using hyperbolic equations.		
G.GP	What are the	Write equations of parabolas in standard	Same as above	
E.A.2	characteristics of a	form given its characteristics.		
	parabola?		Match the parabola to its graph.	
		Complete the square on quadratic equations		
	How can we identify an	to write the equation of the parabola from		
	equation as a parabola	general to standard form.		
	equation?			
	How do we find the	Sketch a parabola using its equation.		
	vertex, directrix, and			
	axis of a parabola?	Find the tangent line at a point on a		
		parabola.		
		Model and solve real world situations		
		using parabolic equations.		

General Differentiated Instruction Strategies				
 Leveled texts Chunking texts Choice board Socratic Seminar Tiered Instruction Small group instruction Guided Reading Sentence starters/frames 	 Repeat, reword directions Brain breaks and movement breaks Brief and concrete directions Checklists for tasks Graphic organizers Assistive technology (spell check, voice to type) Study guides Tiered learning stations 			
 Writing scaffolds Tangible items/pictures Adjust length of assignment 	 Tiered questioning Data-driven student partnerships Extra time 			

Time/General	Processing	Comprehension	Recall
Extra time for assigned tasks Adjust length of assignment Timeline with due dates for reports and projects Communication system between home and school Provide lecture notes/outline	 Extra Response time Have students verbalize steps Repeat, clarify or reword directions Mini-breaks between tasks Provide a warning for transitions Reading partners 	 Precise step-by-step directions Short manageable tasks Brief and concrete directions Provide immediate feedback Small group instruction Emphasize multi-sensory learning 	 Teacher-made checklis Use visual graphic organizers Reference resources to promote independence Visual and verbal reminders Graphic organizers

Assistive Technology	Assessments and Grading	Behavior/Attention	Organization
 Computer/whiteboard Tape recorder Spell-checker Audio-taped books 	Extended timeStudy guidesShortened testsRead directions aloud	 Consistent daily structured routine Simple and clear classroom rules Frequent feedback 	 Individual daily planner Display a written agenda Note-taking assistance Color code materials

Enrichment

The goal of Enrichment is to provide learners with the opportunity to participate in extension activities that are differentiated and enhance the curriculum. All enrichment decisions will be based upon individual student needs.

- Show a high degree of intellectual, creative and/or artistic ability and demonstrate this ability in multiple ways.
- Pose questions and exhibit sincere curiosity about principles and how things work.
- The ability to grasp concepts and make real world and cross-curricular connections.
- Generate theories and hypotheses and pursue methods of inquiry.
- Produce products that express insight, creativity, and excellence.
- Possess exceptional leadership skills.
- Evaluate vocabulary
- Elevate Text Complexity
- Inquiry based assignments and projects
- Independent student options
- Tiered/Multi-level activities
- Purposeful Learning Center
- Open-ended activities and projects
- Form and build on learning communities
- Providing pupils with experiences outside the 'regular' curriculum
- Altering the pace the student uses to cover regular curriculum in order to explore topics of interest in greater depth/breadth within their own grade level
- A higher quality of work than the norm for the given age group.
- The promotion of a higher level of thinking and making connections.
- The inclusion of additional subject areas and/or activities (cross-curricular).

• Using supplementary materials in addition to the normal range of resources.

English Language Learner (ELL) Resources

- Learning style quiz for students- http://www.educationplanner.org/students/self-assessments/learning-styles-quiz.shtml
- "Word clouds" from text that you provide-http://www.wordle.net/
- Bilingual website for students, parents and educators: http://www.colorincolorado.org/
- Learn a language for FREE-www.Duolingo.com
- Time on task for students-http://www.online-stopwatch.com/
- Differentiation activities for students based on their Lexile-www.Mobymax.com
- WIDA-http://www.wida.us/
- Everything ESL http://www.everythingESL.net
- ELL Tool Box Suggestion Site http://www.wallwisher.com/wall/elltoolbox
- Hope4Education http://www.hope4education.com
- Learning the Language http://blogs.edweek.org/edweek/learning-the-language/
- FLENJ (Foreign Language Educators of NJ) 'E-Verse' wiki: http://www.flenj.org/Publications/?page=135
- OELA http://www.ed.gov/offices/OBEMLA
- New Jersey Department of Education-Bilingual Education information http://www.state.nj.us/education/bilingual/

Special Education Resources

- Animoto -Animoto provides tools for making videos by using animation to pull together a series of images and combining with audio. Animoto videos or presentations are easy to publish and share. https://animoto.com
- Bookbuilder -Use this site to create, share, publish, and read digital books that engage and support diverse learners according to their individual needs, interests, and skills. http://bookbuilder.cast.org/
- CAST -CAST is a non-profit research and development organization dedicated to Universal Design for Learning (UDL). UDL research demonstrates that the challenge of diversity can and must be met by making curriculum flexible and responsive to learner differences. http://www.cast.org
- CoSketch -CoSketch is a multi-user online whiteboard designed to give you the ability to quickly visualize and share your ideas as images. http://www.cosketch.com/
- Crayon -The Crayon.net site offers an electronic template for students to create their own newspapers. The site allows you to bring multiple

sources together, thus creating an individualized and customized newspaper. http://crayon.net/ Education Oasis -Education Oasis offers a collection of graphic organizers to help students organize and retain knowledge – cause and effect, character and story, compare and contrast, and more! http://www.educationoasis.com/printables/graphic-organizers/

- Edutopia -A comprehensive website and online community that increases knowledge, sharing, and adoption of what works in K-12 education. We emphasize core strategies: project-based learning, comprehensive assessment, integrated studies, social and emotional learning, educational leadership and teacher development, and technology integration. <u>http://www.edutopia.org/</u>
- Glogster -Glogster allows you to create "interactive posters" to communicate ideas. Students can embed media links, sound, and video, and then share their posters with friends. http://edu.glogster.com/?ref=personal
- Interactives Elements of a Story -This interactive breaks down the important elements of a story. Students go through the series of steps for constructing a story including: Setting, Characters, Sequence, Exposition, Conflict, Climax, and Resolution. http://www.learner.org/interactives/story/index.html
- National Writing Project (NWP) -Unique in breadth and scale, the NWP is a network of sites anchored at colleges and universities and serving teachers across disciplines and at all levels, early childhood through university. We provide professional development, develop resources, generate research, and act on knowledge to improve the teaching of writing and learning in schools and communities. http://www.nwp.org
- Pacecar -Vocab Ahead offers videos that give an active demonstration of vocabulary with audio repeating the pronunciation, definition, various uses, and synonyms. Students can also go through flash cards which give a written definition and visual representation of the word. http://pacecar.missingmethod.com/