
OPERON REVIEW

NAME

Use your pool noodle operon to demonstrate the following then draw a picture below. Be sure to include: RNA polymerase, repressors, and any other molecules needed to show how this works.

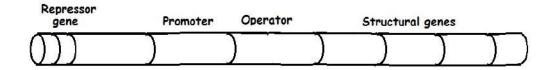
trp OPERON WHEN TRYPTOPHAN LEVELS ARE LOW:

GENE TURNED ON

trp OPERON WHEN TRYPTOPHAN LEVELS ARE HIGH

GENE TURNED OFF

Repressor gene	Promoter	Operator		Str	uctural	genes		
()))))))))	\supset


WITHOUT TRYPTOPHAN this operon is turned ON OFF (Circle one)	
The trp operon is a REPRESSIBLE INDUCIBLE OPERON (Circle one)	
When this operon is "turned on" the repressor is ACTIVE INACTIVE (Circle one)	
When this operon is "turned off" the repressor is ACTIVE INACTIVE (Circle one)	
When tryptophan is attached to the repressor, the repressor is ACTIVE INACTIVE (Circle one)	
The use of a repressor protein to turn this operon off is an example of control. positive negative	
Repressible operons are most commonly associated with enzymes that function in p catabolic anabolic	oathways.
The structural genes in the trp operon code for enzymes that tryptophan. produce breakdown	

EXPLAIN what happens to transcription of the trp operon when tryptophan is absent and WHY.

Use your pool noodle operon to demonstrate the following then draw pictures below. Include: RNA polymerase, repressors, and any other molecules needed to show how it works.

lac OPERON WHEN LACTOSE LEVELS ARE HIGH:

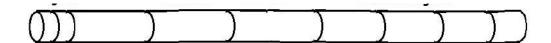
GENE TURNED ON

lac OPERON WHEN LACTOSE LEVELS ARE LOW:

GENE TURNED OFF

Repressor gene	Promoter	Operator		Structure	al genes	
$\overline{0}$)))))	\sum

WITHOUT LACTOSE this operon is turned ON OFF ((Circle one)
The lac operon is a REPRESSIBLE INDUCIBLE OPER	RON (Circle one)
When this operon is "turned on" the repressor is ACTIVE	INACTIVE (Circle one)
When this operon is "turned off" the repressor is ACTIVE	INACTIVE (Circle one)
When lactose is attached to the repressor, the repressor is	ACTIVE INACTIVE (Circle one)
The use of a repressor protein to turn this operon off is an ex	control control positive negative
Inducible operons are most commonly associated with enzymes	s that function in pathways. catabolic anabolic
The structural genes in the lac operon code for enzymes that	lactose. produce breakdown


EXPLAIN what happens to transcription at the lac operon and when lactose is absent and WHY.

In addition to a repressor, the lac operon is also POSITIVELY controlled by an inducer protein. The presence of lactose alone is NOT enough to turn on the lac operon, if GLUCOSE is also present. NO expression of the operon will occur unless the CAP inducer (Catabolic Activator protein) is present. This ensures that bacteria will utilize glucose before any other carbon source as a source of energy.

There is an inverse relationship between glucose levels and cyclic AMP (cAMP) levels in bacteria. When glucose levels are high cAMP levels are low and when glucose levels are low cAMP levels are high. In bacteria, cAMP binds to a cAMP binding protein called CAP. This cAMP-CAP complex binds to a site in the promoter increasing transcription of the operon. Since the role of the CAP-cAMP complex is to turn on transcription, this type of control is called POSITIVE CONTROL.

lac OPERON WHEN GLUCOSE IS LOW and LACTOSE LEVELS ARE HIGH:

GENE TURNED ON

lac OPERON when GLUCOSE and LACTOSE are BOTH PRESENT:

GENE TURNED OFF

Repressor gene	Promoter	Operator		Structural	genes		
VJJ	1	1	1	1	J	J.)

WHEN BOTH GLUCOSE AND LACTOSE are present the lac operon is turned ON OFF (Circle one)

When glucose is present c-AMP is LOW HIGH in the cell.

When CAP binds with cAMP it becomes **ACTIVE INACTIVE** (Circle one)

When cAMP-CAP complex binds to the promoter transcription INCREASES DECREASES (Circle one)

EXPLAIN which TWO things happen in a bacterial cell to turn on the lac operon when glucose is low and lactose is high.

PICK AN OPERON:	The operon I	picked is _					
The operon you chose	is similar to w	hich of the	ese operons?	lac	trp	(Circle o	ne)
The operon you chose	is indu d	ible	repressible	(Circle	one)		
In a cell the represso and the gene is tu		5 1	,	the a	ctive	inactive	form. (Circle one)

DRAW PICTURES TO SHOW HOW YOUR ASSIGNED OPERON WORKS:

TURNED ON

Repressor gene	Promoter	Operator		Str	ructural	genes		
011	1	1	7	7	1	T	1	7
		<u> </u>	1				J	_)

TURNED OFF

Repressor gene	Promoter	Operator		Sti	ructural	genes		
011	1	1	7	1	7	1	1	7
		<u> </u>	1	_1_]	

What are the advantages of having genes organized into operons in prokaryotes?

How are structural genes different from regulatory genes?

How is the way genes are laid out on the DNA different in eukaryotes vs prokaryotes?

COMPARE AND CONTRAST REPRESSIBLE AND INDUCIBLE OPERONS.

Fill in the chart to organize what you know about the lac and trp operons.

Operon	lac	trp
Involved in regulating anabolic or catabolic pathways?		
Structural genes for this operon code for proteins that do what?	Function	Function
This gene is usually		
TURNED ON TURNED OFF		
The operon is inducible or repressible		
Type of CONTROL for this operon POSITIVE NEGATIVE BOTH		
The repressor is produced in an active or inactive form		
What conditions are necessary for the repressor protein to become ACTIVE?		
What conditions are necessary for the inducer protein (CAP) to become ACTIVE?		X

Regulatory sequence on an operon where RNA polymerase binds = _____

Regulatory sequence on an operon where the repressor binds = _____

Regulatory sequence on the lac operon where the cAMP-CAP inducer binds = ______