Wild Type Males Vestigial Winged Males Wild Type Females Vestigial Winged Females These data for VESTIGIAL WINGS suggest this pattern is characteristic of the second	F ₂ Generation of a gene. X-linked	
PHENOTYPE F1 Generation F Wild Type Males Vestigial Winged Males Wild Type Females Vestigial Winged Females These data for VESTIGIAL WINGS suggest this pattern is characteristic of the second s	of a gene.	
Wild Type Males Vestigial Winged Males Wild Type Females Vestigial Winged Females These data for VESTIGIAL WINGS suggest this pattern is characteristic of the second	of a gene.	
Vestigial Winged Males Wild Type Females Vestigial Winged Females These data for VESTIGIAL WINGS suggest this pattern is characteristic of the second sec	gene.	
Wild Type Females Vestigial Winged Females These data for VESTIGIAL WINGS suggest this pattern is characteristic of the second	gene.	
Vestigial Winged Females These data for VESTIGIAL WINGS suggest this pattern is characteristic of the second seco	gene.	
These data for VESTIGIAL WINGS suggest this pattern is characteristic o	gene.	
	gene.	_
Vrite a NULL hypothesis that describes the mode of inheritance for the VI There is no difference between the observed data and the data exp	pected if vestigial genetic trait.	
I would expect this pattern in the F_2 offspringAre the deviations for the phenotypic ratio of the F_2 generation within the To answer this question, statistically analyze the data using the Chi-square of the square of the squa	limits expected by	
Calculate the Chi-square statistic for the F_2 generation in the chart below.	•	
Observed Phenotypes (o) Expected (e) (a	(o-e) (o-e) ²	(<u>o-e)</u> ²

Referring to the critical values chart, what is the probability (p) value for these data?

Chi-square (X2) = _____

X² =

How many degrees of freedom are there?

Remember:	The	minimu	ım v	ralue	for	rejec	ting	the	null	hypo	thesis	in	the	scier	ıces	is O	.05.	This	means	that	only
5% of the	time	would	you	ехре	ct t	o see	simi	lar	data	if t	he null	l hy	poth	nesis	is co	orrec	t OR	you	are 9	5% s	ıre
the data de	oes n	ot fit	the	expe	ctec	l ratio) .														

If the calculated X^2 value is greater than or equal to the critical value from the table, then the null hypothesis is REJECTED.

According to the probability (p) value, do you accept or reject your null hypothesis for this cross? Explain.

What are the genotypes of the P_1 flies ?	FEMALE	MALE
What are the genotypes of the F1 flies?	FEMALE	MALE
How is this trait inherited?		
Is the mutation autosomal or sex link	ed?	
Is the mutation dominant or recessive	2?	

Make 2 Punnett squares showing parents and F_1 and F_2 offspring for this trait.

Cross 2: White Eyed Female x Wild Type Male

	F ₁ Generation	F ₂ Generation		
Wild Type Males				
White eyed Males				
Wild Type Females				
White Eyed Females				
These data for WHITE EYES sugg	est this pattern is char	acteristic of a	aene	
dominant	recessive	autosomal X-linke	gene. d	
Vrite a NULL hypothesis that des See cross #1)	cribes the mode of inhe	ritance for the WHITE	EYED trait.	
I would expect this pattern in I	, -			
·	the F2 offspring		expected by	chance?
I would expect this pattern in t Are the deviations for the phenoty	the F2 offspring	the chart below.	expected by (o-e) ²	<u>chance?</u> (o-e) ² e
I would expect this pattern in t Are the deviations for the phenoty Calculate the Chi-square statistic f	the F2 offspring rpic ratio of the F2 gene for the F2 generation in	the chart below.		
I would expect this pattern in t Are the deviations for the phenoty Calculate the Chi-square statistic f	the F2 offspring rpic ratio of the F2 gene for the F2 generation in	the chart below.		
I would expect this pattern in t Are the deviations for the phenoty Calculate the Chi-square statistic f	the F2 offspring rpic ratio of the F2 gene for the F2 generation in	the chart below.		
I would expect this pattern in t Are the deviations for the phenoty Calculate the Chi-square statistic f	the F2 offspring rpic ratio of the F2 gene for the F2 generation in	the chart below.		

According to the probability value, can you accept or reject your null hypothesis for this cross? Explain.

What are the genotypes of the P_1 flies?	FEMALE	MALE
What are the genotypes of the F_1 flies?	FEMALE	MALE
How is this trait inherited? Is the mutation autosomal or sex	linked?	
Is the mutation dominant or reces	ssive?	
Make 2 Punnett squares showing parents	and F1 and F2 offspring for this tr	ait.

Cross 3: Wild Type Female x Sepia Eyed, Dumpy Winged Male

			F ₁ Generation	F2 Gen	neration
Wild Type Males					
Wild Type Female					
Total Wild Types					
Dumpy Winged Mal	es (normal eyes)				
Dumpy Winged Fen	nales (normal eyes)			
Total Dumpy Winge	ed (normal eyes)				
Sepia eyed Males (normal wings)				
Sepia eyed Female:	s (normal wings)				
Total Sepia eyes (n	ormal wings)				
Dumpy Wings, Sepi	a eyed Males				
Dumpy Wings, Sepi	a eyed Females				
Total Dumpy Wings	s, Sepia eyed				
dominant These data for SEF	recessive PIA EYED suggest	autosomal this pattern is charac	X-linked cteristic of a	0000	
dominant	recessive	autosomal	X-linked	_ gene	
These data are sua	aest this pattern	is characteristic of a			cross.
	J · · · · · · · · · · · · · · · · ·		monohybrid	dihybrid	
Write a NULL hypo studied. (See cross		ibes the mode of inhe	ritance for the	e traits (sepia (eyes and dumpy wing
I would expect	this pattern in the	e F1 offspring			
I would expect	this pattern in the	: F ₂ offspring			

Observed Phenotypes (o)	Expected (e)	(o-e)	(o-e) ²	<u>(o-e)²</u> e
			X ² =	

Chi-square (X²) =	How many degrees of freed	lom are there?
Referring to the critical values chart, who	at is the probability (p) value for t	hese data?
According to the probability value, can yo	u accept or reject your null hypotl	nesis? Explain.
What are the genotypes of the P_1 flies?	FEMALE	MALE
What are the genotypes of the F1 flies?	FEMALE	MALE
How is this DUMY WINGS trait inherited	!?	
Is the mutation autosomal or sex	linked?	
Is the mutation dominant or reces	ssive?	
How is this SEPIA EYED trait inherited?		
Is the mutation autosomal or sex	linked?	
Is the mutation dominant or reces	ssive?	
Are these genes (DUMPY WINGS and SE	PIA EYED) linked?	

Cross 4: DESIGN YOUR OWN CROSS (Cross with a WT)

PHENOTYPE	F ₁ Generation	F ₂ Generation
Wild Type Males		
Males		
Wild Type Females		
Females		

	11100			i			
	Wild Type Females						
	Females						
Write	a NULL hypothesis that describe	es the mode of	inheritance	for the	trait(s) yo	ou studied.	(See cross #1)
I	would expect this pattern in the I	-1 offspring					
Ιν	vould expect this pattern in the F	2 offspring _	 				
	ne deviations for the phenotypic r ate the Chi-square statistic for t		-			xpected by	chance?
	Observed Phenotypes (o)		Expected	(e)	(o-e)	(o-e) ²	<u>(o-e)²</u> e
						X ² =	
	juare (X²) =		many degree				
Refer	ring to the critical values chart, w	that is the pro	bability (p)	value for	these da	ta?	
Accor	ding to the probability value, can	you accept or 1	reject your	null hypo	othesis? E	×plain.	
How is	s this trait inherited?						
Is	the mutation dominant or recess	ive?					

Is the mutation autosomal or sex linked? _____

EXTRA CREDIT LINKED CROSS:

PHENOTYPE

Make a cross between a WILD TYPE FEMALE and a HOMOZYGOUS SPINELESS BRISTLES and EBONY BODY MALE. WATCH BOZEMAN BIOLOGY VIDEO- LINKED GENES to see how to do this (Basically you will do a test cross between an F_1 female from this cross and a HOMOZYGOUS male fly with spineless bristles AND ebony body (*Use dad from the first cross*!!!!!!!!!!!!))

RESULTS

Wild Type Males	
Wild Type Female	
Total Wild Types	
Ebony body Males (WT bristles)	
Ebony body Females (WT bristles)	
Total Ebony body (WT bristles)	
Spineless bristle Males (WT body)	
Spineless bristle Females (WT body)	
Total spineless bristle (WT body)	
Ebony body spineless bristle Males	
Ebony body, spineless bristle Females	
Total Ebony body, spineless bristles	
Number of Recombinants?	
Number of Parental?	
Crossing over frequency?	

What is the map distance between these genes (EBONY BODY and SPINELESS BRISTLES?