5 th Grade Science
Chapter 8 Study Guide

Name:		#
Date:	Homeroom:	

DIRECTIONS: Read Lesson 1. Fill in the blanks with the correct answer.

Lesson 1, Matter

What is matter made of?

1.	Matter is anything that has _	and	
2.	An	_ is a material that cannot be broken down into	
	anything simpler.		

3. Elements can be classified as:

Classification	Properties
	Shiny, conduct heat and electricity, bend easily
	Dull, poor conductors of heat electricity, brittle
	Have some properties of metals and some properties of nonmetals

4.	A(n)	is the smallest unit of an element that retains (keeps
	the properties of that elem	ent

Atoms are made of smaller particles:

 	 	 	 ,

A <u>proton</u> has one unit of **positive** electric charge. The number of protons in an atom is called the **atomic number**. This is what determines which element it is. Protons are found in the **center** of the atom (nucleus).

A <u>neutron</u> is a particle with **no** electric charge—it is **neutral**. Neutrons are also found in the **center** of the atom (nucleus).

<u>Electrons</u> are smaller particles and have one unit of **negative charge** each. Electrons move within the space **outside** the nucleus.

Usually, the number of protons and electrons are **equal**, so atoms have no overall charge.

Protons and neutrons have about the same mass, which is called **atomic mass unit** (amu).

Add the mass of all the protons and neutrons in an atom to find the **atomic mass.**

Wha	t are compo	ounds?					
6.		forms when two or more elements combine. ompounds have properties different from their individual elements.					
	Compound	is nave	properties a	inerent irc	m tn	ieir individual elements.	
7.		compou	ınds have ch	nemical na	mes	s, and many have common names	
8.			name	s use the	nam	nes of the elements. The second	
	element ha Examples:		me changed	d slightly.			
	Iron 2Fe	+	Oxygen 30		=	Iron Oxide (rust) Fe₂0₃	
	Sodium Na	+	Chlorine Cl		=	Sodium Chloride (table salt) NaCl	
9.						, such as wat en two or more atoms join togethe	
	Examples: Oxygen we made from of oxygen. O ₂	e breath i two atc	e is	Охуд	en	(Oxygen)	
	Water is for one oxyger two hydrog	n atom agen aton	and	Water —	→ (+ Oxygen + Hydrogen	
How	are elemen	ts grou	ped?				
10.	The period	lic table	groups the	elements a	accor	rding to their properties .	

The periodic table groups the elements according	to their properties	S .
1) Whether they are		
2) Whether they are,, temperature	or	at room
3) Whether they are,		, or

The symbols for most elements are made of one or two letters. The first letter is ALWAYS capital, the second letter is NEVER capital.

What forms can matter have?

11. Three state	s of matter:,	,·
	 Particles have very little freedom to move; particles vibrate in place; definite shape with definite volume; does not change shape unless something changes it by heat or being broken 	
	 Particles move more freely than in a solid; close together but can flow past each other; takes shape of container; a definite volume but not a definite shape. 	0009C 9009 800
	 Particles not close together; no definite volume or shape; at room temperature move around to fill their container; if volume of container increases, gas expands to fill it. (balloons, balls) 	

5 th Grade Science	Name :		_#
Chapter 8 Study Guide	Date:	_Homeroom	

DIRECTIONS: Read Lesson 2. Fill in the blanks with the correct answer.

Lesson 2, Physical and Chemical Properties

What are physical properties?

1.	A	_ is something that can be observed
	about an object without changing the identity of the	ne object.

2. Physical properties of matter: mass, volume, weight, density, buoyancy, color, hardness, odor, magnetism

Property	Description
	Amount of matter in an object; can be measured on an
	equal pan balance; mass is measured in kilograms or grams
	Measures how much space matter takes up; calculate the
	volume of a regularly shaped object by multiplying its length (L)
	by its width (W) by its height (H); LxWxH=V (in cubic
	centimeters, cm ³)
	Irregularly shaped objects can be placed in a graduated cylinder
	or beaker with a specific amount of water in it; when placed in
	the water the level rises; the change in the water level when an
	object is placed under water tells the object's volume; measured
	in mL (1 cm ³ = 1 mL)
	How strongly gravity pulls on an object; if an object has more
	mass it will have more weight; weight is measured in newtons;
	1 newton = 0.225 pounds (lbs) in the English system; measured
	with a scale
	Amount of mass for each cm ³ (or mL) of a substance; to find
	density, divide its mass by its volume;
	mass
	Density = volume
	The resistance to sinking; object can tloat as a result of
	buoyancy; depends on density and shape;
	Surface tension: in water, every particle pulls toward the other
	particles, creating a "skin" on the surface; an object that is
	spread out may be able to rest on the "skin" and float

	describes the way a substance
reacts with other substances. The old matter	•
changed back into its original state.	
Evidence of a chemical change:	
1) a gas is produced	
a change in temperature	
3) a change in color	
4) a change in odor	
5) a change in pH	
	reacts with other substances. The old matte changed back into its original state. Evidence of a chemical change: 1) a gas is produced 2) a change in temperature 3) a change in color 4) a change in odor 5) a change in pH

4. Physical properties can be classified as:

Extensive Properties	Intensive Properties		
Depends on the amount of substance present:,	Do NOT depend on the amount of substance present:,		
,	,		

5 th G	rade Science N	lama:		
Chapter 8 Study Guide			Date:	
DIRE	CTIONS: Read Lesson 3. Fill in the blani	ks with the (correct answer.	
Less	on 3, Conductors and Insulators			
What	t are conductors and insulators?			
1.	Many physical properties can be determined by taking simple measurements or making observations. Some require testing and investigations to measure. One property that requires testing is			
2.	A material that easily conducts heat	t energy is	called a	
	Materials that do not conduct heat v	well are cal	led	
	Conductors		Insulators	
	Heat up quickly and evenly		Do not conduct heat well	
	Gold, copper, silver, and most me		Often absorb heat, but do not distribute it evenly	
	Solids are better than liquids		Many nonmetals , such as wood, plastic, and glass	
	Liquids are better than gases	,	Effectiveness is measured by the rate at which heat passes through them. The slower it moves through, the better an insulator it is.	
How	are conductors and insulators use	ed?		
3.	Pans used for cooking need to be made of a conductive material, such as metal. The metal helps to evenly to cook the food.			
4.		is a	a material used to prevent heat	

from flowing into or out of a building. Insulation keeps buildings warm in the winter and cool in the summer. Cloth, plastic, fiberglass, air, and other insulators

can all be used as insulation.

Types of Insulation		
Vacuum	Not a good conductor of heat; used in some thermoses to keep hot liquids hot	
Concrete	Helps insulate; holes trap air	
Air	Slows heat transfer through walls and roofs	
Winter coats, sweaters, fleece jackets	is trapped and warmed by your body to keep you warm	
Layers of clothes	is trapped and warmed by your body to keep you warm	
Blankets and gloves	Traps from the body and prevents it from flowing to the surrounding air	

5. Insulators in nature:

Animal	Insulator	How it Works	
Birds	Layer of soft, fluffy feathers called down	Traps and keeps it close to the birds' bodies	
Many Mammals	Hair and fur	Trapsunderneath hair to keep the animals warm	
Ocean Mammals (whales and dolphins)	Blubber – layer of fat	Allows them to maintain body temperature in water	

Do conductors have other uses?

6.	Materials that are goodconductors, such as metals often good electrical conductors as well. They allow electrical charges to refer the conductors are such as metals of the conductors.			
	easilygood conductor.	is often used in electrical wires b	ecause it is a	
7.	Materials, such as rubber and plas do not allow electrical charges to f metal wires to protect you from ele	low. Electrical insulators are place		
8.	It is important to know what materi electricity can be dangerous .	als are good electrical conductors		
	Power cords can be dangerous if t and bare wires are showing.	he	is worn	

5 th Gra	ide Science	Name:	#
Chapter 8 Study Guide		Homeroom:	Date:
DIREC	CTIONS: Read Lesson 4. Fill in the bla	anks with the correct a	answer.
Lesso	n 4, Mixtures		
What a	are mixtures?		
1.	A is a p Mixtures like snack mix that have diff heterogenous.		
2.	Some heterogeneous mixtures do no You can see the parts clearly when y	ou look at them unde	•
3.	Over time parts of the suspension wi mixture, however, will .make it look s	Il settle to the bottom.	Shaking or stirring the
4.	A is not settle. Examples of colloids:	a mixture like a suspe	
What	are solutions?		
5.	A is a m same everywhere, even under a microscope. The smaller amount dissolves that is dissolved in a solution is called the		The larger amount that the other substance in a is called the
6.	Solutions can be made with		
	is	an important solution	or water vapor in air. when it
	condenses, it forms clouds.	ion of carbon diavida	and in liquid water
7. 8.	Seltzer (carbonated water) is a solution An alloy is a solution of a metal and Many common household products a beverages.	another solid (often a	nother metal).
9.	The maximum amount of a solute the Solubility often depends on tempera		
	attemperatures	S.	
10.	is often called the un	iversal solvent becau	se it can dissolve many things.

How can mixtures be separated?

11. The parts of mixtures can be separated using **physical methods**, which will not change their properties or identities.

Ways Mixtures Can Be Separated

1) Magnetism

2) Sieve

3) Filtration

4) Flotation

5) Evaporation

6) Pick out with Tongs

7) Settling

8) Distillation

	rade Science ter 8 Study Guide)				#
DIREC	CTIONS: Read Les	son 5. Fill in the	blanks with tl	he correct an	swer.	
Lesso	on 5, Physical and	l Chemical Chai	nges			
What	are physical char	nges?				
	ohysical change a					
	Crushing Blowing u	ng your pencil an aluminum car p a balloon g and evaporatin	n Br Fo	eaking glass Ilding paper i	nto a particu	ılar shape ge)
	A substance charidentity.	nging from a soli	d to a liquid to	o a gas does	not change	its chemical
2.	Combining two s physical change.	ubstances to for	rm a		is another e	xample of
3.	Physical changes	can be reversed	d using			methods.
1411	Raisins, pretzels, picked out of the Sugar can be disand collected, lea	mixture, the way solved in water to aving the sugar in	they were or o form a mixto	iginally. ure. The wate		
What	are chemical cha	nges?				
4.	Chemical change different from the					
	Chemists write ed Chemicals on the a chemical equat Reactants	left side of ion are called	Ch	s similar to _ nemicals on t uation are ca <u>Produc</u>	he right side alled	equations.
	Baking Soda acetate	+ Vinegar		water + ca	rbon dioxid	e + sodium
	NaHCO ₃	+ HC ₂ H ₃ O ₂		H ₂ O +	C0 ₂	+ NaC ₂ H ₃ O ₂
	How many aton		side of the a	rrow in the	equation al	pove?
	This is called the	e law of conse	rvation of n	nass. The t		• •

5.	Math equations make sense whether you read them right to left or left to right.			
	Chemical equations are similar. Most chemical equations are,			
	or they can be undone. The products break apart or combine to form the original			
	reactants.			
	Water can be broken down into and			
How	can you spot a chemical change?			
6.	Chemical changes produce, which have			
	properties than the previous ones. Often you can			
	, or the formation of new substances as a			
	chemical change occurs.			
	Signs of a chemical change:			
	1) Changes in color: removes the color from clothing			
	2) Changes color with metals: corrosion of a metal can cause a color change called			
	; when iron rusts (corrosion) it becomes a reddish color			
	3) Releases gas: indicate that a chemical change has occurre			
	4) Forms a precipitate – a solid formed from a chemical reaction of some solutions;			
	"soap scum" on a sink is a formed from solutions of soap			
	and water 5) Releases energy – a burning candle produces a hot flame; come from the chemical change (combination of atoms) in the candle and the wick with oxygen from the air			
7.	Chemical reactions are taking place			
	Some examples:			
	Plants use energy from the Sun to help them create (their food).			
	Plants and animals use chemical reactions to release which is used to fuel their cells.			
	3) Machines use from chemical reactions.			
	4) Chemical reactions happen in nature to form compounds that created			
	·			
	5) Artificial compounds are also formed with chemical reactionsare formed with these changes.			