SCARSDALE HIGH SCHOOL Mathematics Department

iviatnematics Department						
	Math 424 Final Exam June 14, 2012 12:45 – 2:45 P.M.	Name: <u>ŁEY</u> Teacher:				
	SCIENTIFIC CALCULATORS ARE PERMITTED Instructions: Read the directions at the beginning of each part. Show all work for possible partial credit in parts II, III and IV.					
		PART I				
	<u>Directions</u> : Answer 12 out of 15 que choice in the space pro	nestions. <u>Omit 3 questions</u> . Write the letter of the best ovided. Partial credit is not allowed. (3 points each	st)			
	 1. Which of the following operationa 	l systems is a group?				
	$(a)(Z_{21},\cdot)$	$(c)(Z_{15},+)$				
	(b) (Z,\cdot)	$(d)\big({\it Q}^*, +\big)$				
		angle.	_			
	- 3. Which of the following is logically $(a) \sim p \rightarrow r$ $(b) \sim p \rightarrow s$	we equivalent to $[p \lor \sim r] \land [r \lor s]$? $(c) \sim r \rightarrow s$ $(d) \sim r \rightarrow \sim s$				
_	- 4. Which of the following is the solut	$xion set to x^2 < x?$				

(c)0 < x < 1

 $(d)x < 0 \lor x > 1$

(a)x<1

 $(b)x < 0 \land x < 1$

5. The locus of points equidistant from the circles whose equations are

$$x^2 + y^2 = 4$$
 and $x^2 + y^2 = 64$ is which of the following?

(a) $x^2 + y^2 = 39$

(c) $x^2 + y^2 = 30$

(b) $x^2 + y^2 = 36$

(d) $x^2 + y^2 = 25$

- L=S X₅+A₅=84 L=S X₅+A₅=8

- 6. Which of the following is equivalent to $-\frac{11}{9}$ in Z_{13} ?
 - (a)2

(b)6

(d)12

- 7. In the accompanying diagram, $\triangle ABC$ is an equilateral triangle J, K, and L are midpoints as shown. If the perimeter of the $\triangle JKL$ is 12 cm, which of the following could be the length of the altitude \overline{LM} ?
 - $(a)\sqrt{3}$

 $(c)2\sqrt{3}$

(b)2

(d)4

- 8. The accompanying diagram is not drawn to scale, which of the following segments is the longest?
 - (a) AK

(c) PK

(b) RK

(d) AR

- 9. Which of the following is the solution set to the equation $\left| \frac{1}{3}x 2 \right| = 7$?
 - $(a){27,-15}$

 $(c)\{15,-27\}$

 $(b)\{-19,19\}$

 $(d)\{-8,20\}$

C.

- 10. Which of the following is the logically equivalent to the statement "If all students pass their finals, then there will be no summer school and the camps will be full"?
 - (a) If all students don't pass their finals, then there will be summer school or the camps are not full.
 - (b) If the camp aren't full and there is summer school, then some students did not pass their finals.
 - (c) If the camp aren't full or there is summer school, then some students did not pass their finals.
 - (d) If some students don't pass their finals, then there will be summer school and the camps are not full.

0

11. In the accompanying figure, lines j, k and l are parallel and $\overline{AB} \cong \overline{AC}$, if $m \angle ABC = x$ and $m \angle ACD = y$, then $m \angle ADE$ is equal to which of the following?

$$(a)2x+y$$

$$(b)2y+x$$

$$(d)180-2x$$

b

12. Which of the following is the inverse of $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ under the operation $a \circ b$ "a followed by b"?

$$(a)\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$(c)\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$(b)\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$$

(d) Does not exist.

- 13. A line passes through the points (-1,5) and (7,|k|). Which of the following must be true if the slope of the line is positive?
 - (a)k>0
 - $(b)k < -5 \lor k > 5$

- 14. In the figure below R is the midpoint of secant \overline{TQ} , \overline{TS} is tangent to the circle at S. The ratio of the tangent to the external segment of the secant is which of the following?
 - $(a)1:\sqrt{2}$

 $(b)1:\sqrt{3}$

 $(d)\sqrt{3}:1$

 $2 \times (x) = y^2$

$$2 = \frac{\gamma^2}{x^2} \implies \frac{\gamma}{x} = \frac{\sqrt{2}}{1}$$

- 15. The intersection of the perpendicular bisectors of the sides of a triangle is called?
 - (a) Circumcenter

(c) Incenter

(b)Orthocenter

(d)centroid

PART II

<u>Directions</u>: Answer 8 out of 12 questions. <u>Omit 4 questions</u>. Show all work in the space provided for possible partial credit. Unless otherwise specified, answers should be given in <u>simplest radical form</u>. (4 points each)

Write the question number to be omitted in the space below.

1. Simplify the expression assume no denominator $\frac{2x^2 + 4x}{x^2 + 4x + 4 - 9y^2} \cdot \frac{x + 3y + 2}{3x^2 + 6x}$ or variable can equal zero:

$$\frac{2 \times (x+z)}{(x+z)^2 - 9y^2} \cdot \frac{x+3y+z}{3x(x+z)} = \frac{2(x+3x+z)}{3(x+2-3y)(x+2+3y)} = \frac{2}{3(x+2-3y)} + 1$$

2. Find the equation for the locus of points equidistant from (3,2) and (-9,-2). Leave your answer in point-slope form.

$$M = \frac{-2-2}{-9-3}$$
 Midpoint: $(-3, 0)$

$$M = -\frac{4}{72}$$

$$y - 0 = -3(x+3)$$

$$M = \frac{1}{3} (H)$$

$$Y = -3(x+3)$$

3. Simplify the expression: $\frac{\frac{2a+1}{a}}{3-12a^{-2}}$

$$\frac{2a+4}{a} \cdot \frac{a^{2}}{1} = \frac{a(2a+4)}{3a^{2}-12} = \frac{2a(a+2)}{3(a+2)(a-2)} = \frac{2a}{3(a-2)} (+1)$$
(+1)

4. Find the standard form equation for the locus of points equidistant from (5,-2) and the line v = 4.

$$PF = PD + \frac{1}{2}$$

$$\sqrt{(x-5)^2 + (y+2)^2} = \sqrt{(x-x)^2 + (y-4)^2}$$

$$(x-5)^2 + (y+2)^2 = (y-4)^2$$

$$(x-5)^2 + (y+2)^2 = (y-4)^2$$

$$x^2 - 10x + 25 + y^2 + 4y + 4 = y^2 - 8y + 16$$

$$x^2 - 10x + 4y + 19 = -8y + 16$$

$$x^2 - 10x + 13 = -12y$$

$$-\frac{1}{12}(x^2 - 10x + 13) = y \text{ or } y = -\frac{x^2}{12} + \frac{5}{6}x - \frac{13}{12}$$
5. Find the area of the isosceles trapezoid TRAP (not shown), if $AP = 10$, $m \angle A = 120$, and

PT = 16. (leave your answer in simplest radical form)

$$A = \frac{563}{2} (6 + 16) | (+1)$$

$$A = 55\sqrt{3} (+1)$$

6. In the accompanying diagram, chord \overline{ST} bisects chord \overline{EF} at R. If EF = 24find SR, given SR : RT = 4:1.

$$(4 \times) \cdot \times = 12 \cdot 12 \ (+2)$$

 $4 \times^2 = 144$
 $X^2 = 36$
 $X = 6 \ (+1)$
 $SR = 24 \ (H)$

7. Prove or disprove the following: Multiplication distributes over *, where $a * b = a^2 - b$, $\forall a, b \in \Re$? (Substitution of numbers for variables will not be accepted.)

$$C(a*b) \stackrel{?}{=} (ca*cb) *^{2}$$

$$C(a^{2}-b) \stackrel{?}{=} (ca)^{2}-cb)$$

$$a^{2}c-bc \neq a^{2}a^{2}-cb \qquad *^{1}$$

$$i \quad mult. \quad does not down look over \qquad *^{1}$$

8. In $\triangle FGH$, J and K are the midpoints of \overline{FG} and \overline{FH} respectively. If FG = 20, FH = 12, GH = 3x + 5, and JK = x + 7, find the perimeter of JKHG.

9. Find the length of the median \overline{CM} in $\triangle ABC$, where A(-5,-5), B(7,1), and C(-2,2).

$$CM = \sqrt{(-2-1)^2 + (2+2)^2} + 2$$

$$CM = \sqrt{9 + 16} = \sqrt{5} + \sqrt{4}$$

11a. Find the number of permutations that can be formed from the letters in the word "CONTESTANT"

$$\frac{10!}{2!3!} = \boxed{302,400}$$

11b. A book collection contains 6 different music books, 4 different art books, and 3 different literature books. A sample is selected from the collection, how many 5-book samples are there that have 3 music books and 2 literature books?

$$6 \, {}^{\circ}_{3} \, {}^{\circ}_{3} \, {}^{\circ}_{2} = 20 \cdot 3 = \boxed{60}$$

$$(+1) \qquad (+1)$$

12. In the figure below, find the area of the shaded region bounded by the chord \overline{AB} and \overline{AB} , if AB = 10 and area of the circle is 50π . Leave your answer in terms of π .

PART III

<u>Directions</u>: Answer two (2) questions from this part. <u>Omit 1 problem</u>. Show all work. (8 pts. each)
Write the question number to be omitted in the space below.

1. Given:	$r \rightarrow \sim j$
	$\sim (\sim r \wedge k)$
	$\sim (\sim p \rightarrow \sim k)$
Prove:	$\sim j \vee t$

rove:	$\sim j \vee t$	
	Statement	Reason
	1. ~(~p -> ~K)	1. Given
	2. ~p ~~ (~K)	2. Deft of regation of a conditional (1)
	3. ~(~K)	3. Defr of true conjunction (2)
	4. ~ Gr n K)	4. Given
	5. rv~k	5. De Morgan's Laws (4)
	6. (6. Law of Dissonehive Inference (3,5)
	7. r -> - i	7. Given
	8. ~1	8. Law of Detachment (6,7)
	9. ~j v t	q. Law of Disjunctive Addition (8)
		1 if we re

2. Given: $\overline{KE} \cong \overline{JE}$, $\angle LTK \cong \angle MTJ$,

T is the midpoint of KJ

Prove: $\overline{KM} \cong \overline{JL}$

Statement

Reason

3. Tis the midple of KT

5. ALTKEXMITS

8, 4LTM = ALTM

9. MALTK=MAMITJ MALTMEMALTM

11. MAKTM=MALTK+MALTM M A LTJ=MAMTJ+MALTM

12. MAKTM=MALTS

B. AKTM= AtTJ

14. DMTR = DLTJ

15: KM = IL

1. GIVEN

2. If 2 sides of a D are = Hen the 4.5 opp. those sides are = .

3. Given

4. Defr of midpoint.

5. Given

6. ASA Axiom (+3)

7, Com. parts of = Discre =.

8. Rafferine Areporty

q. Defor of = 40.

10 . MALTK+MALTM = MAMTJ+mAJTM 10. Add prop. of equality

11. A Add Axiom

12. Substitution Prop. (10,111)

13. Deficof = 415

14. SAS AYrom (+4)

15. Corr. perbof & Disane 3.

(+1)

3. Prove using coordinate geometry: The midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

Given: Right & ABC, wirt. & A.
Misthemidat. of BC

Provi Misequidistant from A, B and C.

(+1) Conelusion

$$Am = \sqrt{(a-0)^2 + (b-0)^2}$$

i' m is equidistant from A, B and C.

PART IV

<u>Directions</u>: Answer any two (2) questions. <u>Omit 2</u> problems. Show all work. <u>Final</u> answers must be in simplest radical form. (8 points each)

Write the question number to be omitted in the space below.

1. Given: Circle O, C is the midpoint of \widehat{AB} , chords \overline{BC} , \overline{CD} , and \overline{DB} are drawn. Secants \overline{PBA} and \overline{PFD} are drawn from external point P. \overline{PBA} intersects chord \overline{CD} at E. $\widehat{mAB} = 70$, $\widehat{mBF} = 64$, and $\widehat{m} \angle P = 28$.

106

(a) Find \widehat{mAD}

$$28 = \frac{1}{2} (m \beta p - 64)$$

$$1 m \beta p = 120$$

 $\nu \nu$ (b) Find $m \angle BED$

YL (c) Find $m\angle DBP$

 $\gamma \lambda$ (d) In the figure name the triangle similar but not congruent to $\triangle BEC$.

2a. Show that the equation expressing the condition that the point (x, y) is twice as far from the point (3,-1) as it is from (4,6) is $3x^2 + 3y^2 - 16x + 20y - 12 = 0$.

2b. A cyclist travels 200 km, part at 30 km/h and the rest at 20 km/h. How far does the cyclist travel at each speed if the trip takes 7.5 hours?

	r 1	t	D	_			
PART A	30	<u>d</u> 30	d	42			
PALTB	20	200-d 20	200-d				
60: 1 d		100-d)	15		150 km@ 30 km h	+1	
60° (d) + -	20	2.6	7	5000 20 Km	41	
2d + 3(200-d)= 450							
2d +100-3d= 450							
	-	d = -1	50				
d = 150							

Page 13 of 15

3a. In $\triangle KLM$, \overline{LP} is drawn to \overline{MK} such that $\angle KLP \cong \angle MLP$. MP is two less than KP, LM = 9 and KL = 12. Find the perimeter of the triangle. KLP

$$\frac{X}{X-2} = \frac{12}{9}$$

$$-24 = -3x$$

$$S = X$$

3b. In the figure below, PWES is a rectangle and $\overline{WS} \perp \overline{XY}$. If WX = 18 and XY = 36, find WS.

$$(71)$$
 $\frac{36}{18} = \frac{18}{X}$

$$\frac{9}{7} = \frac{4}{27}$$
 (+1)

4a. Find the length of the shorter diagonal of a rhombus whose perimeter is 100, and whose longer diagonal is 48 cm.

4b. Solve: $\frac{x}{x^2-1} + \frac{2}{x+1} = 1 + \frac{1}{2x-2}$

$$X^{2} + 24^{2} = 25^{2} + 1$$
 $X^{2} + 576 = 625$
 $X^{2} = 49$
 $X = 7 + 1$
 $AC = 147 + 1$

-1 if not respected.

$$\frac{2(x+1)(x-1)}{1} \left[\frac{x}{(x+1)(x-1)} + \frac{2}{x+1} \right] = \left(1 + \frac{1}{2(x-1)}\right) \frac{2(x+1)(x-1)}{1} + \frac{1}{4}$$

$$\frac{2x + 4(x-1)}{2x + 4x - 4} = \frac{2(x+1)(x-1)}{2(x+1)(x-1)} + \frac{1}{2(x+1)} + \frac{1}{2(x+1)}$$

$$\frac{6x - 4}{2x^2 - 2} + \frac{2}{x+1}$$

$$\frac{6x - 4}{2x^2 - 2} + \frac{2}{x+1}$$

$$\frac{6x - 4}{2x^2 - 5x + 3}$$

$$\frac{2x - 3}{2} = 0 \quad x - 1 = 0$$

$$x = \frac{3}{2} \quad x = 1$$

$$x = \frac{3}{2} \quad x = 1$$