

- 76. The graph of f', the derivative f, is shown above for $-2 \le x \le 5$. On what intervals is f increasing?
 - (A) [-2, 1] only
 - (B) [-2, 3]
 - (C) [3, 5] only
 - (D) [0, 1.5] and [3, 5]
 - (E) [-2, -1], [1, 2], and [4, 5]

- 77. The figure above shows the graph of a function f with domain $0 \le x \le 4$. Which of the following statements are true?
 - I. $\lim_{x\to 2^{-}} f(x)$ exists.
 - II. $\lim_{x\to 2^+} f(x)$ exists.
 - III. $\lim_{x\to 2} f(x)$ exists.

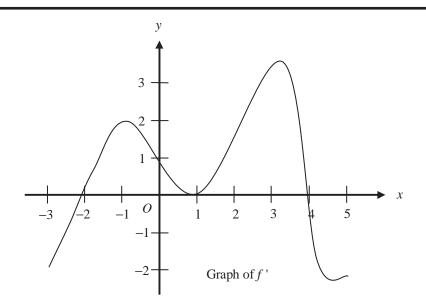
- (A) I only (B) II only (C) I and II only (D) I and III only (E) I, II, and III

- 78. The first derivative of the function f is defined by $f'(x) = \sin(x^3 x)$ for $0 \le x \le 2$. On what interval(s) is f increasing?
 - (A) $1 \le x \le 1.445$
 - (B) $1 \le x \le 1.691$
 - (C) $1.445 \le x \le 1.875$
 - (D) $0.577 \le x \le 1.445$ and $1.875 \le x \le 2$
 - (E) $0 \le x \le 1$ and $1.691 \le x \le 2$

79. If $\int_{-5}^{2} f(x) dx = -17$ and $\int_{5}^{2} f(x) dx = -4$, what is the value of $\int_{-5}^{5} f(x) dx$?

- (A) -21 (B) -13 (C) 0
- (D) 13
- (E) 21

80. The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)?


- (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five

- 81. If G(x) is an antiderivative for f(x) and G(2) = -7, then G(4) =
 - (A) f'(4)
 - (B) -7 + f'(4)
 - (C) $\int_{2}^{4} f(t) dt$
 - (D) $\int_{2}^{4} \left(-7 + f(t)\right) dt$
 - (E) $-7 + \int_{2}^{4} f(t) dt$

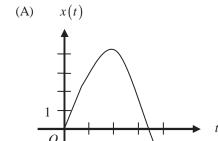
- 82. A particle moves along a straight line with velocity given by $v(t) = 7 (1.01)^{-t^2}$ at time $t \ge 0$. What is the acceleration of the particle at time t = 3?
 - (A) 0.914
- (B) 0.055
- (C) 5.486
- (D) 6.086
- (E) 18.087

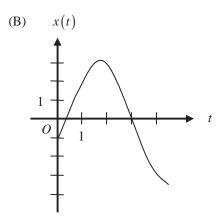
83. What is the area enclosed by the curves $y = x^3 - 8x^2 + 18x - 5$ and y = x + 5?

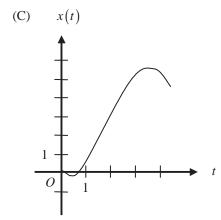
- (A) 10.667
- (B) 11.833
- (C) 14.583
- (D) 21.333
- (E) 32

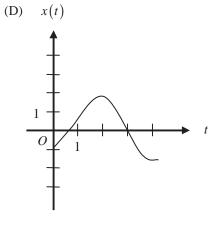
84. The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at x = -1, x = 1, and x = 3. At which of the following values of x does f have a relative maximum?

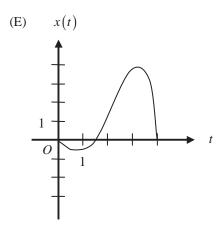
- (A) -2 only
- (B) 1 only
- (C) 4 only
- (D) -1 and 3 only
- (E) -2, 1, and 4


AP Calculus 2008 Multiple Choice


X	-4	-3	-2	-1
f(x)	0.75	-1.5	-2.25	-1.5
f'(x)	-3	-1.5	0	1.5


- 85. The table above gives values of a function f and its derivative at selected values of x. If fis continuous on the interval [-4, -1], what is the value of $\int_{-4}^{-1} f'(x) dx$?
 - (A) -4.5
- (B) -2.25
- (C) 0 (D) 2.25
- (E) 4.5


t	0	1	2	3	4
v(t)	-1	2	3	0	-4


86. The table gives selected values of the velocity, v(t), of a particle moving along the *x*-axis. At time t = 0, the particle is at the origin. Which of the following could be the graph of the position, x(t), of the particle for $0 \le t \le 4$?

- 87. An object traveling in a straight line has position x(t) at time t. If the initial position is x(0) = 2 and the velocity of the object is $v(t) = \sqrt[3]{1+t^2}$, what is the position of the object at time t = 3?
 - (A) 0.431
- (B) 2.154 (C) 4.512 (D) 6.512
- (E) 17.408

- 88. The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S = 4\pi r^2$)
 - (A) -108π (B) -72π (C) -48π (D) -24π (E) -16π

AP Calculus 2008 Multiple Choice

89. The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true?

- (A) For -2 < k < 2, f'(k) > 0.
- (B) For -2 < k < 2, f'(k) < 0.
- (C) For -2 < k < 2, f'(k) exists.
- (D) For -2 < k < 2, f'(k) exists, but f' is not continuous.
- (E) For some k, where -2 < k < 2, f'(k) does not exist.

90. The function f is continuous on the closed interval [2, 4] and twice differentiable on the open interval (2, 4). If f'(3) = 2 and f''(x) < 0 on the open interval (2, 4), which of the following could be a table of values for f?

(A)

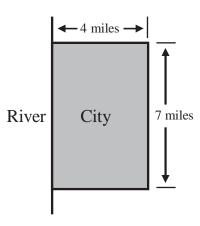
х	f(x)
2	2.5
3	5
4	6.5

(B)

х	f(x)
2	2.5
3	5
4	7

(C)

х	f(x)
2	3
3	5
4	6.5


(D)

х	f(x)
2	3
3	5
4	7

(E)

х	f(x)
2	3.5
3	5
4	7.5

- 91. What is the average value of $y = \frac{\cos x}{x^2 + x + 2}$ on the closed interval [-1, 3]?
 - (A) -0.085
- (B) 0.090
- (C) 0.183
- (D) 0.244
- (E) 0.732

- 92. A city located beside a river has a rectangular boundary as shown in the figure above. The population density of the city at any point along a strip x miles from the river's edge is f(x) persons per square mile. Which of the following expressions gives the population of the city?
 - (A) $\int_{0}^{4} f(x) dx$
 - (B) $7\int_0^4 f(x)dx$
 - (C) $28\int_0^4 f(x)dx$
 - (D) $\int_0^7 f(x) dx$
 - (E) $4\int_0^7 f(x)dx$