	NI	T
-		١

NAME	DATE
TANIE	DAIL

Scenario

Carlos and Dominique collect the following data from an experiment where they exerted the same force, F, to identical sized boxes with different masses and recorded the acceleration.

Trial	Mass	Acceleration
1	2 kg	1.5 m/s ²
2	4 kg	0.75 m/s ²
3	5 kg	0.60 m/s ²
4	7 kg	0.40 m/s ²
5	12 kg	0.30 m/s ²
6	15 kg	0.20 m/s ²
7	18 kg	0.15 m/s ²

Using Representations

PART A: Plot the acceleration of the boxes versus the mass of each box.

Data Analysis Graph Relationship As x increases, yincreases proportionally. y is directly proportional As x increases, ydecreases. y is inversely proportional to x. y is proportional to the square of x. The square of y is proportional to x. PART B: Based on the graph you created in Part A, identify the correct relationship between the acceleration and mass of an object. Fill in the blanks. _, acceleration _____. Therefore, acceleration is _ As mass to mass. PART C: Based on your analysis in Part B, what could be graphed instead of mass and acceleration that would lead to a linear relationship? PART D: What is the physical meaning of the slope of the linearized graph suggested in Part C?