Investigation: Composition of Functions

We will divide the class into 2 teams. Team A and Team B.

Team A will be given a secret function A(x). Team B will be given a secret function B(x).

Step 1. Ms. Shih will pass a number to Team A first. Team A will find the values of A(x) and complete the table below.

For each number, once Team A has finished with their function, they will pass the answer they got to Team B. Team B will now use Team A's answer as their input and find the output. Team B will complete the table below.

Team B

Team A

B(x)

X

Χ

So, team B's output should be called _____

A(x)

					_		
•	Step 2: 1		ill now try	to figure o	out team B's function	. Team B will now try to figur	e out
	team A 3	•					
		Complete t of team			output of team A is c	alled	
	We used	team A's	output as	team B's	input. So Team B's i	nput is called	

		B(A(x))	
hat hap	Now let's try it the othe opens. Team B will con eam B	nplete the B table.	eam A will comple Team A	
hat hap	opens. Team B will con		eam A will comple	
hat har Te	opens. Team B will con eam B	nplete the B table.	eam A will comple Team A	
hat hap	opens. Team B will con eam B	nplete the B table.	eam A will comple Team A	
hat har Te	opens. Team B will con eam B	nplete the B table.	eam A will comple Team A	
hat hap	opens. Team B will con eam B	nplete the B table.	eam A will comple Team A	

Complete the table using the composite function					
X	B(A(x))				

Step 7: Now let's write the two separate function as a single composition of functions.

Step 8: Is composition of functions commutative (does order matter)?

2.8 (4.8) Composition of Functions

Lets practice those.

Given the functions $f(x) = 4x^2 - 2x + 1$ and g(x) = -5x + 3, find:

a. f(3)

b. f(-3)

c. g(-2)

d. g(4x - 1)

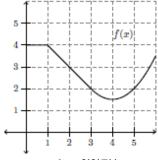
Today, we will be focusing on a special type of operation called composition. We already know how to do this.

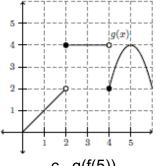
Let $f(x) = 4x^2 + 5$ and g(x) = -3x + 7. Find the following.

a. f(g(2))

b. f(g(x))

c. Now redo part a using the answer you got from part b.


d. g(f(-2))


e. g(f(x))

e. Now redo part d using the answer you got from part e.

You Try!

1. Let f(x) and g(x) be functions defined with the graphs shown below. Use the graphs to evaluate the following.

a. f(g(1))

b. f(f(5))

- c. g(f(5))
- 2. Given the functions $f(x) = 3 + \sqrt{x+5}$ and $g(x) = 2 + (x-1)^2$. Find a. f(4) b. f(g(4)) c. g(f(4))
- 3. The functions f and g are defined by these sets of input and output values.

$$g = \{(1,2), (-2, 4), (5, 5), (6, -2)\}$$

$$f = \{(0, -2), (4, 1), (3, 5), (5, 0)\}$$

- a. Find g(f(4))
- b. Find f(g(-2))
- c. Find f(g(f(3)))
- 4. The functions of f and g are defined by these sets of input and output values:

$$g = \{(1, 2), (-2, 4), (5,5), (6, -2)\}$$

$$f = \{(2, 1), (4, -2), (5,5), (-2, 6)\}$$

a. Find g(f(2))

- b. f(g(6))
- c. Select any number from the domain of either g or f, and find f(g(x)) or g(f(x)). Describe what is happening.
- 5. Given $f(x) = -x^2 + 2x + 3$ and $g(x) = (x 2)^2$, find

a. f(g(3))

$$g(x) = (x - 2)^2$$
, fire b. $f(g(2))$

c.
$$g(f(1))$$

- d. f(g(x)) Simplify to remove all parentheses.
- e. g(f(x)) Simplify to remove all parentheses.
- f. Redo part b and c using the composite functions you got in part d and e.

1. The functions *f* and *g* are defined by sets of input and output values.

 $f = \{(5, 0), (-1, 1), (-3, 4), (1, 2), (3, 4), (-2, 6)\}$ $g = \{(4, -1), (0, -2), (1, -1), (2, -2), (6, 0)\}$

a. Find f(g(-3))

b. Findg(f(-3))

c. Find f(g(f(5))).

- d. Find g(f(g(0))).
- 2. Use these three functions to find each value: f(x) = -3x + 5, $g(x) = (x 2)^2$, $h(x) = x^2 + 4$.

- a. g(2x) + 1 b. h(f(7)) c. h(g(f(0)))
- d. f(h(x))

13. Solve.

a.
$$\sqrt{|x-4|} = 3$$

c.
$$|3 - \sqrt{x}| = 5$$

b.
$$(3 - \sqrt{x+2})^2 = 4$$

d.
$$3 + 5\sqrt{1 + 2x^2} = 13$$

- **16.** Imagine translating the graph of $f(x) = x^2$ left 3 units and up 5 units, and call the image g(x).
 - a. Give the equation for g(x).
 - **b.** What is the vertex of the graph of y = g(x)?
 - c. Give the coordinates of the image point on the parabola that is 2 units to the right of the vertex.