Lesson 2.7

Practice Level C

- **1.** The Linear Pair Post. and Vertical Angles Congruence Thm. can be used to deduce that $\angle 5$, $\angle 6$, and $\angle 7$ are right angles. So, $\angle 5$, $\angle 6$, $\angle 7$, and $\angle 8$ are all congruent by the Right Angles Congruence Thm. $\angle 1 \cong \angle 3$ and $\angle 4 \cong \angle 2$ by the Congruent Complements Thm.
- **2**. By the Linear Pair Post., the following are supplementary: $\angle 1$ and $\angle 2$, $\angle 3$ and $\angle 4$, $\angle 5$ and $\angle 6$, $\angle 7$ and $\angle 9$, $\angle 8$ and $\angle 10$. You can

deduce that $\angle 4$ is a right angle, so $\angle 3 \cong \angle 4$ by the Right Angles Congruence Thm. By the Congruent Supplements Thm., $\angle 1$, $\angle 6$, $\angle 9$, and $\angle 10$ are congruent and $\angle 2$, $\angle 5$, $\angle 7$, and $\angle 8$ are congruent. **3.** 37°, 90°, 53°, 37° **4.** 56°, 90°, 56°, 34° **5.** 51°, 39°, 90°, 51° **6.** 54°, 36°, 36°

7.
$$x = 25, y = 14$$
 8. $x = 13, y = 16$

9.
$$x = 50, y = 53, z = 127$$

10.
$$x = 4$$
, $y = 21$, $z = 71$ **11.** 118° **12.** 96°

13.
$$84^{\circ}$$
 14. 62° **15.** 28° **16.** 56° **17.** yes

23. Given;
$$m \angle STU$$
; Angle Addition Post.;

$$40^{\circ} + 50^{\circ}$$
; 90°; Def. of rt. Angle; $\angle S \cong \angle STU$

- **24.** *Sample answer:*
- 1. $\angle 1$ and $\angle 4$ are comp. $\angle 4$ and $\angle 5$ are comp. $\angle 1$ and $\angle 2$ are supp. $\angle 5$ and $\angle 6$ are supp. $m\angle 1 = 52^{\circ}$ (Given)
- **2.** $\angle 1 \cong \angle 5$ (Congruent Complements Theorem)
- 3. $\angle 2 \cong \angle 6$ (Congruent Supplements Theorem)

4.
$$m \angle 1 + m \angle 2 = 180^{\circ}$$

(Def. of supplementary angles)

- 5. $52^{\circ} + m \angle 2 = 180^{\circ}$ (Subst. Prop. of Equality)
- **6.** $m \angle 2 = 128^{\circ}$ (Subtraction Prop. of Equality)
- 7. $m \angle 2 = m \angle 6$ (Def. of congruent angles)
- **8.** $m \angle 6 = 128^{\circ}$ (Subst. Prop. of Equality)

Answer Key