

to consider interactions at this detailed mechanical level, yet it is equally important to ask what interactions are occurring (e.g., predator-prey relationships in an ecosystem) and to recognize that they all involve transfers of energy, matter, and (in some cases) information among parts of the system... Any model of a system incorporates assumptions and approximations; the key is to be aware of what they are and how they affect the model's reliability and precision. Predictions may be reliable but not precise or, worse, precise but not reliable; the degree of reliability and precision needed depends on the use to which the model will be put." (p. 93)

Progression Across the Grades	Performance Expectation from the NGSS
<i>In grades K-2,</i> students understand objects and organisms can be described in terms of their parts; and systems in the natural and designed world have parts that work together.	K-ESS3-1. Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live.
<i>In grades 3-5,</i> students understand that a system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. They can also describe a system in terms of its components and their interactions.	3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.
<i>In grades 6-8,</i> students can understand that systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. They can use models to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. They can also learn that models are limited in that they only represent certain aspects of the system under study.	MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
<i>In grades 9-12,</i> students can investigate or analyze a system by defining its boundaries and initial conditions, as well as its inputs and outputs. They can use models (e.g., physical, mathematical, computer models) to simulate the flow of energy, matter, and interactions within and between systems at different scales. They can also use models and simulations to predict the behavior of a system, and recognize that these predictions have limited precision and reliability due to the assumptions and approximations inherent in the models. They can also design systems to do specific tasks.	HS-LS2-5. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

5. Energy and Matter are essential concepts in all disciplines of science and engineering, often in connection with systems. "The supply of energy and of each needed chemical element restricts a system's operation—for example, without inputs of energy (sunlight) and matter (carbon dioxide and water), a plant cannot grow. Hence, it is very informative to track the transfers of matter and energy within, into, or out of any system under study.

"In many systems there also are cycles of various types. In some cases, the most readily observable cycling may be of matter—for example, water going back and forth between Earth's atmosphere and its surface and subsurface reservoirs. Any such cycle of matter also involves associated energy transfers at each stage, so to fully understand the water cycle, one must model not only how water moves between parts of the system but also the energy transfer mechanisms that are critical for that motion.

"Consideration of energy and matter inputs, outputs, and flows or transfers within a system or process are equally important for engineering. A major goal in design is to maximize certain types

April 2013

NGSS Release

of energy output while minimizing others, in order to minimize the energy inputs needed to achieve a desired task." (p. 95)

Progression Across the Grades	Performance Expectation from the NGSS
<i>In grades K-2,</i> students observe objects may break into smaller pieces, be put together into larger pieces, or change shapes.	2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.
<i>In grades 3-5,</i> students learn matter is made of particles and energy can be transferred in various ways and between objects. Students observe the conservation of matter by tracking matter flows and cycles before and after processes and recognizing the total weight of substances does not change.	5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water.
<i>In grades 6-8,</i> students learn matter is conserved because atoms are conserved in physical and chemical processes. They also learn within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). The transfer of energy can be tracked as energy flows through a designed or natural system.	MS-ESS2-4. Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.
<i>In grades 9-12,</i> students learn that the total amount of energy and matter in closed systems is conserved. They can describe changes of energy and matter in a system in terms of energy and matter flows into, out of, and within that system. They also learn that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Energy drives the cycling of matter within and between systems. In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.	HS-PS1-8. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

6. Structure and Function are complementary properties. "The shape and stability of structures of natural and designed objects are related to their function(s). The functioning of natural and built systems alike depends on the shapes and relationships of certain key parts as well as on the properties of the materials from which they are made. A sense of scale is necessary in order to know what properties and what aspects of shape or material are relevant at a particular magnitude or in investigating particular phenomena—that is, the selection of an appropriate scale depends on the question being asked. For example, the substructures of molecules are not particularly important in understanding the phenomenon of pressure, but they are relevant to understanding why the ratio between temperature and pressure at constant volume is different for different substances.

"Similarly, understanding how a bicycle works is best addressed by examining the structures and their functions at the scale of, say, the frame, wheels, and pedals. However, building a lighter bicycle may require knowledge of the properties (such as rigidity and hardness) of the materials needed for specific parts of the bicycle. In that way, the builder can seek less dense materials with appropriate properties; this pursuit may lead in turn to an examination of the atomic-scale structure of candidate materials. As a result, new parts with the desired properties, possibly made of new materials, can be designed and fabricated." (p. 96-97)

April 2013

NGSS Release