Interpreting Solubility Curves

: Water and Its Solutions

What are solubility curves?

How much solid (solute) can dissolve in a liquid (solvent)?

Changing the temperature changes the amount of solid solute that can be dissolved.

Expressed as

Grams of solute/100 grams of solvent

What are solubility curves?

Solubility curves show the amount of solute that can dissolve in <u>100g (mL)</u> <u>of water</u> at different temperatures.

Solubility curves

How many grams of <u>potassium</u> <u>nitrate</u> can be dissolved in 100 mL of water if the water is at 20°C?

Identify the answer from the chart on the right.

Interpreting solubility curves

How many grams of <u>potassium</u> <u>nitrate</u> can be dissolved in 100 mL of water if the water is at 20°C?

Was your answer between

25 and 45 grams?

Good

Interpreting a solubility curve

How many grams of <u>potassium</u> <u>chlorate</u> can be dissolved in 100 mL of water if the water is at 40°C?

Interpreting a solubility curve

How many grams of <u>potassium</u> <u>chlorate</u> can be dissolved in 100 mL of water if the water is at 40°C?

Was your answer between

13 and 16 grams?

Solubility curves

Points <u>ON</u> the curve show <u>saturated</u> solutions.

Points <u>ABOVE</u> the curve show <u>supersaturated</u> solutions. (unstable)

Points <u>Below</u> the curve show <u>unsaturated</u> solutions.

Solubility Curves

Most Charts include curves for more than one solute.

The chart on the right contains the data for 9 solutes.

When using the chart be sure to identify the correct line for the specific solute.

- Find the solubility curve for sodium nitrate.
- How many grams of sodium nitrate can be dissolved in 100 grams of water at 10.°C?

Solubility Curves

• Find the solubility curve for sodium nitrate.

• How many grams of sodium nitrate can be dissolved in 100 grams of water at 10.°C?

80. grams

Use the chart on the right to answer the following questions, the water is 40°C.

- 1. What will be the result of A.?
- 2. What will be the result of B.?

If you dissolve 40. grams of KCl in 100 grams of water at 80°C, what type of solution will you have?

If you dissolve 40. grams of KCl in 100 grams of water at 80°C, what type of solution will you have?

If you dissolve 70. grams of Pb(NO3)2 in 100 grams of water at 30.°C what type of solution will you have?

If you dissolve 70. grams of Pb(NO3)2 in 100 grams of water at 30.°C what type of solution will you have?

If you dissolve 19 grams of KClO₃ in 100 grams of water at 50.°C what type of solution will you have?

If you dissolve 19 grams of KCIO₃ in 100 grams of water at 50.°C what type of solution will you have?

Challenge

How many grams of NaCl can be dissolved in 300 grams of water at 90°C?

Work out an answer before going to the next slide.

Challenge

How many grams of NaCl can be dissolved in 300 grams of water at 90°C?

The chart shows 40 grams NaCl can dissolve in 100 g H2O

300.g H2O	40 g NaCl	= 120.g NaCl
	100.g H20	

In general....

If the temperature increases

the amount of solute that can be dissolved also

In general....

If the temperature increases

the amount of solute that can be dissolved also _____increases_____.

Summary

I can gain information from a solubility curve.

I can make predictions using a solubility curve.