Introduction to Genetics

Chapter 11

The Work of Gregor Mendel

Genetics

The scientific study of heredity.

Vocabulary to Know

Trait: a specific characteristic varying among individuals

ex: eye color

Gene: a portion of DNA determining a trait;
found on the chromosomes

ex: the gene for eye color

Vocabulary (continued)

 Hybrid: the offspring of two parents with different traits

 Gametes: reproductive cells (aka: sex cells; sperm & egg)

Allele: the form of a gene

- Allele: the different forms of a gene
- * Represented by a letter.
- ex: Widow's Peak = W
- * Organisms have two alleles for each trait, one inherited from the mother and one from the father.

ex: WW

Forms of Alleles

<u>Dominant Allele</u>: trait will be expressed with only one copy present

* Represented with capital letters.

ex: W (Widow's peak)

Recessive Allele: trait will only be expressed when no dominant alleles are present

* Represented with lower case letters.

ex: w (No widow's peak)

Gregor Mendel

- Considered the father of genetics.
- Mid-1800s
- Monk who experimented with pea plants in the monastery garden.

Mendel's Conclusions

- 1. Inheritance is determined by factors passed from one generation to the next.
- 2. Principle of dominance: Some alleles are dominant and others are recessive.

Mendel's Conclusions

3. Segregation: A gamete carries only one copy of each gene.

4. Principle of independent assortment: Genes for different traits segregate independently from one another.

Applying Mendel's Principles

Allele Combinations

Homozygous: both alleles are the same
ex: WW or ww

• <u>Heterozygous</u>: alleles are different ex: Ww (capital letter is always 1st!)

 Genotype: the actual allele combination; what the genes say
ex: WW, Ww, ww

 Phenotype: the trait observed ex: Widow's Peak

Punnett Squares

 Used to predict the genotypes of offspring when the genotypes of both parents is known.

Other Patterns of Inheritance

Incomplete Dominance

 The heterozygous phenotype (Ww) is somewhere between both homozygous phenotypes (WW & ww).

Ex: pink flowers

Codominance

Both alleles contribute to the phenotype;

neither allele is dominant.

Ex: roan cattle

Multiple Alleles

• More than two allele possibilities.

Ex: blood type

The ABO Blood System				
Blood Type (genotype)	Type A (AA, AO)	Type B (BB, BO)	Type AB (AB)	Type 0 (00)
Red Blood Cell Surface Proteins (phenotype)	A agglutinogens only	B B B B B B B B B B B B B B B B B B B	A and B agglutinogens	No agglutinogens
Plasma Antibodies (phenotype)	b agglutinin only	a agglutinin only	NONE.	a and b agglutinin

Polygenic Traits

Traits controlled by more than one gene.

Ex: skin color

