DATE

Scenario

A teacher wishes to set up a demonstration that involves connecting a bowling ball of mass M to a fixed-point O on the ceiling by a string. The distance between O and the center of the bowling ball is *L*. The teacher plans to exert a horizontal force to pull the bowling ball to position P, where the string makes a 60° angle to the vertical (holding the ball in place at time $T_{\mbox{\tiny 1}}$). The teacher then plans to release the ball from rest so that the ball swings down to point Q, where the string is vertical (time T_{γ}). However, the teacher is concerned that the tension will be too great at point Q, and the string will break at time T_{γ} and the bowling ball will become a projectile.

PART A: The dots below represent the bowling ball at the locations and moments indicated. Draw free-body diagrams showing and labeling the forces (not components) exerted on each ball. Draw the relative lengths of all vectors to reflect the relative magnitudes of all the forces.

> The ball is at rest at point P as the teacher exerts a horizontal force to keep the ball in place (time T_1).

The ball has been released and at this instant is passing through point Q (time T_{γ}).

PART B: Use conservation of energy to derive an expression for the speed of the ball at point Q in terms of gand L.

PART C: Determine the tension in the rope at the two moments in time indicated in terms of *m* and *g*.

i. Time T_1

	ii. Time $T_{\scriptscriptstyle 2}$
ART D:	Argumentation If the string does not break at time T_1 , then the teacher does not need to worry about letting go of the ball. Explain why using your answers to Part C.

11.F Will the String Break?