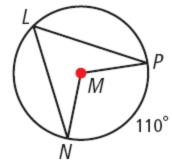
Warm Up

Identify each line or segment that intersects

 ⊙F.
 chords: AE, CD
 secant: AE
 tangent: AB

 Find each measure.
 m∠NMP 110°

3. *m∠NLP* **55°**



Objectives

Find the measures of angles formed by lines that intersect circles.

Use angle measures to solve problems.

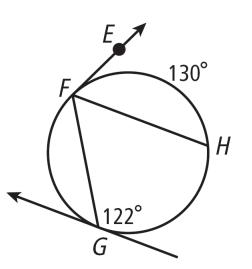
Holt Geometry

Theorem 11-5-1					
THEOREM	HYPOTHESIS	CONCLUSION			
If a tangent and a secant (or chord) intersect on a circle at the point of tangency, then the measure of the angle formed is half the measure of its intercepted arc.	$ \begin{array}{c} $	m∠ABC = $\frac{1}{2}$ mÂB			

Holt Geometry

Example 1A: Using Tangent-Secant and Tangent-Chord Angles

Find each measure. $m \angle EFH$ $m \angle EFH = \frac{1}{2}mFH$ $m \angle EFH = \frac{1}{2}(130^{\circ})$ $= 65^{\circ}$

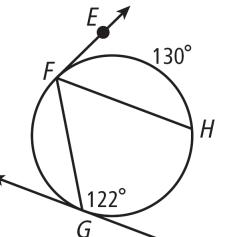


Holt Geometry

Example 1B: Using Tangent-Secant and Tangent-Chord Angles

Find each measure.

mGF $m \angle G = \frac{1}{2}m\widehat{GF}$ $180^{\circ} - 122^{\circ} = \frac{\overline{1}}{2} \mathrm{m}\widehat{GF}$ $58^\circ = \frac{1}{2} m \widehat{GF}$ $116^\circ = m\widehat{GF}$

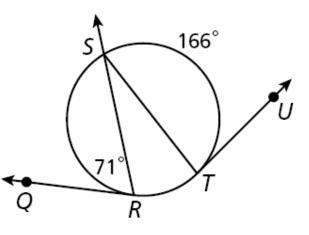


Holt Geometry

Check It Out! Example 1a

Find each measure.

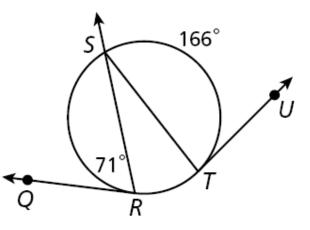
m∠STU $m∠STU = \frac{1}{2}m\widehat{ST}$ $m∠STU = \frac{1}{2}(166^{\circ})$ $= 83^{\circ}$



Holt Geometry

Check It Out! Example 1b

Find each measure. $\widehat{\mathbf{mSR}}$ $m\angle SRQ = \frac{1}{2} \widehat{\mathbf{mSR}}$ $(71^{\circ}) = \frac{1}{2} (\widehat{\mathbf{mSR}})$ $142^{\circ} = \widehat{\mathbf{mSR}}$



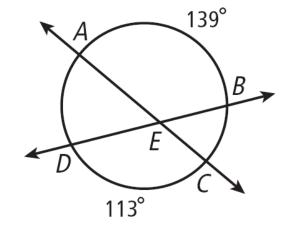
Holt Geometry

Theorem 11-5-2							
THEOREM	HYPOTHESIS	CONCLUSION					
If two secants or chords intersect in the interior of a circle, then the measure of each angle formed is half the sum of the measures of its intercepted arcs.	$A \qquad 1 \qquad C \qquad D \qquad D$ $B \qquad Chords \overline{AD} \text{ and } \overline{BC} \qquad \text{intersect at } E.$	m∠1 = $\frac{1}{2}$ (m \widehat{AB} + m \widehat{CD})					

Example 2: Finding Angle Measures Inside a Circle

Find each measure. m∠*AEB*

$$m \angle AEB = \frac{1}{2} \left(\widehat{mAB} + \widehat{mCD} \right)$$
$$= \frac{1}{2} \left(139^{\circ} + 113^{\circ} \right)$$
$$= \frac{1}{2} \left(252^{\circ} \right)$$
$$= 126^{\circ}$$

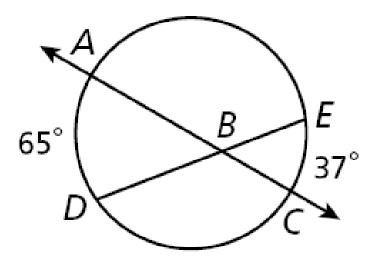


Check It Out! Example 2a

Find each angle measure.

m∠*ABD*

$$m\angle ABD = \frac{1}{2} \left(mEC + mAD \right)$$
$$m\angle ABD = \frac{1}{2} \left(37^{\circ} + 65^{\circ} \right)$$
$$m\angle ABD = \frac{1}{2} \left(102^{\circ} \right)$$
$$m\angle ABD = 51^{\circ}$$

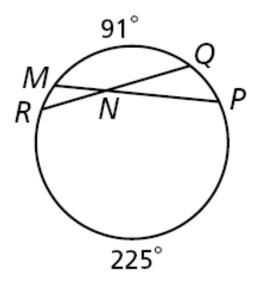


Holt Geometry

Check It Out! Example 2b

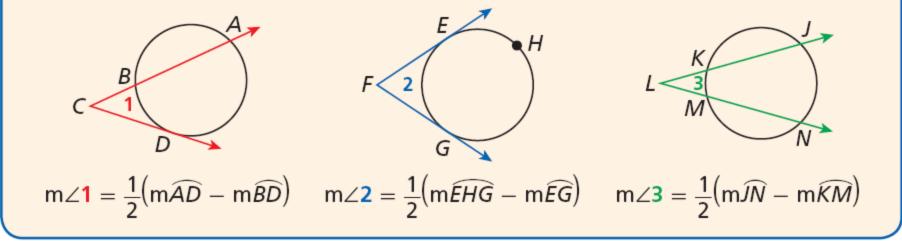
Find each angle measure.

 $m \angle RNM$ $m \angle MNQ = \frac{1}{2} \left(m \widehat{MQ} + m \widehat{RP} \right)$ $m \angle MNQ = \frac{1}{2} \left(91^{\circ} + 225^{\circ} \right) = 158^{\circ}$ $m \angle RNM = 180^{\circ} - \angle MNQ$ $m \angle RNM = 180^{\circ} - 158^{\circ} = 22^{\circ}$



Theorem 11-5-3

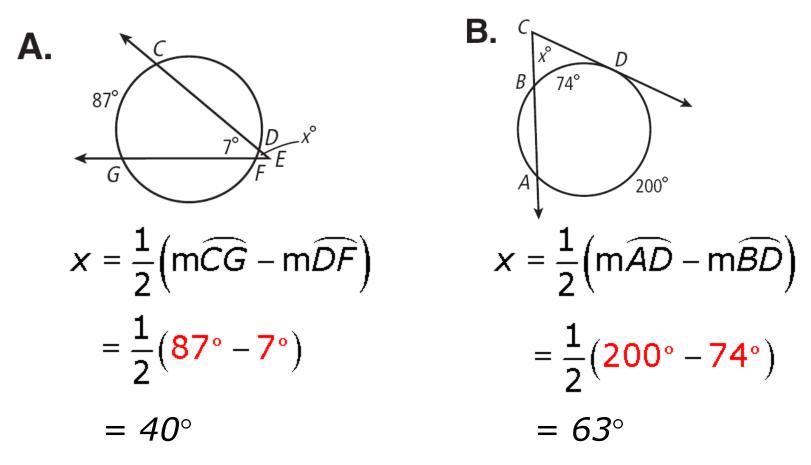
If a tangent and a secant, two tangents, or two secants intersect in the exterior of a circle, then the measure of the angle formed is half the difference of the measures of its intercepted arcs.



Holt Geometry

Example 3: Finding Measures Using Tangents and Secants

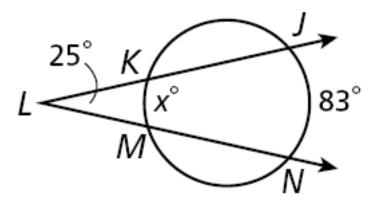
Find the value of x.



Check It Out! Example 3

Find the value of x.

$$m \angle L = \frac{1}{2} \left(m \widehat{JN} - m \widehat{KM} \right)$$
$$25^{\circ} = \frac{1}{2} \left(83^{\circ} - x^{\circ} \right)$$
$$50^{\circ} = 83^{\circ} - x$$



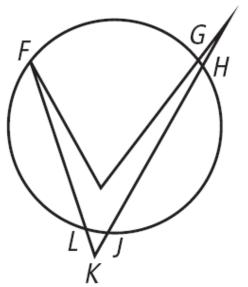
x = *33*°

Holt Geometry

Example 4: Design Application

In the company logo shown, $\widehat{mFH} = 108^\circ$, and $\widehat{mLJ} = 12^\circ$. What is $m\angle FKH$?

$$m \angle FKH = \frac{1}{2} \left(m \widehat{FH} - m \widehat{LJ} \right)$$
$$= \frac{1}{2} \left(108^{\circ} - 12^{\circ} \right)$$
$$= \frac{1}{2} \left(96^{\circ} \right) = 48^{\circ}$$



Check It Out! Example 4

Two of the six muscles that control eye movement are attached to the eyeball and intersect behind the eye. If mAEB = 225°, what is m \angle ACB?

$$m \angle ACB = \frac{1}{2} \left(m \widehat{AEB} - m \widehat{AB} \right)$$

= $\frac{1}{2} \left(225^{\circ} - 135^{\circ} \right)$
= $\frac{1}{2} \left(90^{\circ} \right) = 45^{\circ}$

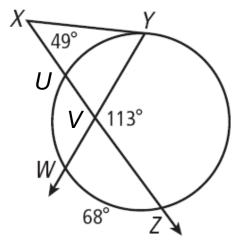
Holt Geometry

/	Angle Relationships in Circles						
	VERTEX OF THE ANGLE	MEASURE OF ANGLE	DIAGRAMS				
	On a circle	Half the measure of its intercepted arc	1 120°	200°			
			m <mark>∠1</mark> = 60°	m <mark>∠2</mark> = 100°			
	Inside a circle	Half the sum of the measures of its intercepted arcs	44° 1 86°	$m∠1 = \frac{1}{2}(44^{\circ} + 86^{\circ})$ = 65°			
	Outside a circle	Half the difference of the measures of its intercepted arcs	1 78° 202°	2 45° 125°			
			$m∠1 = \frac{1}{2}(202^{\circ} - 78^{\circ})$ = 62°	$m∠2 = \frac{1}{2}(125^{\circ} - 45^{\circ})$ = 40°			

Holt Geometry

Example 5: Finding Arc Measures

Find mYZ. Step 1 Find mUY. $m\angle XVY = \frac{1}{2}(mUY + mWZ)$



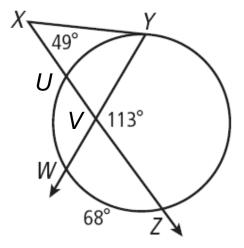
$$180^{\circ} - \frac{113^{\circ}}{2} = \frac{1}{2} \left(m \widehat{UY} + \frac{68^{\circ}}{2} \right)$$
$$134^{\circ} = m \widehat{UY} + 68^{\circ}$$
$$m \widehat{UY} = 66^{\circ}$$

Substitute 180 - 113 for $m \angle XVY$ and 68 for m WZMultiply both sides by 2. Subtract 68 from both sides.

Holt Geometry

Example 5 Continued

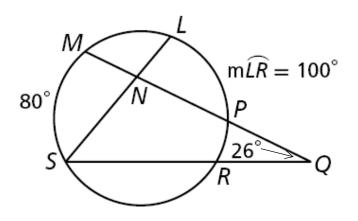
Step 2 Find mYZ.
$$U_{V}_{V}_{V}_{113}$$
 $m \angle X = \frac{1}{2} (mYZ - mUY)$ Thm. 11-5-3 $49^{\circ} = \frac{1}{2} (mYZ - 66^{\circ})$ Substitute the given values. $98^{\circ} = mYZ - 66^{\circ}$ Multiply both sides by 2. $164^{\circ} = mYZ$ Add 66 to both sides.



Holt Geometry

Check It Out! Example 5

Find mLPStep 1 Find mPR. $m \angle PQR = \frac{1}{2} (m \widehat{MS} - m \widehat{PR})$ $26^{\circ} = \frac{1}{2} \left(80^{\circ} - m \widehat{PR} \right)$ $52^{\circ} = 80^{\circ} - m\hat{PR}$ $28^\circ = m \widehat{PR}$



Step 2 Find mLP.

$$m\widehat{LR} = m\widehat{LP} + m\widehat{PR}$$

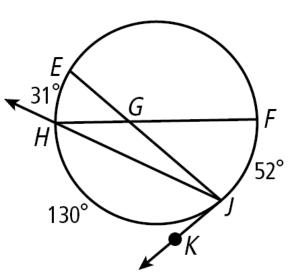
100° = m $\widehat{LP} + 28°$
72° = m \widehat{LP}

Lesson Quiz: Part I

Find each measure.

1. *m*∠*FGJ* **41.5°**

2. *m*∠*H*JK 65°

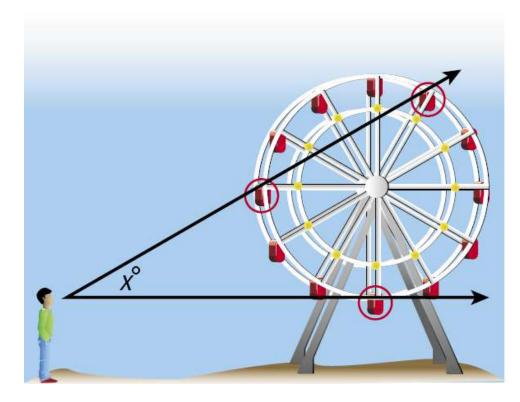


Holt Geometry

Lesson Quiz: Part II

3. An observer watches people riding a Ferris wheel that has 12 equally spaced cars.

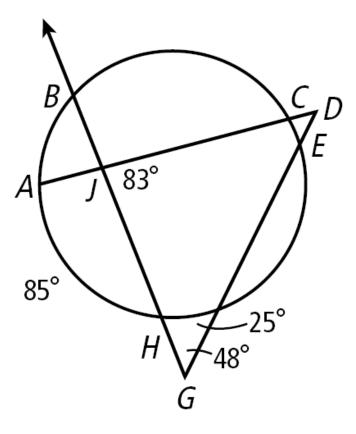
Find x. 30°



Holt Geometry

Lesson Quiz: Part III

4. Find mCE. 12°



Holt Geometry