10. 2 Mount St. Helens Volcano Event

Background:

Background Video

On May 18, 1980, Mount Saint Helens, in the state of Washington, erupted. This event altered the surrounding environment and provided scientists with an opportunity to study the effects of volcanic eruptions on the geosphere, hydrosphere, atmosphere, and biosphere. Such studies are vital because volcanic eruptions will continue to occur, and will have an increasing impact on humans as people continue to settle lands closer to dormant volcanoes. The following are but a few of the myriad of interactions resulting from a volcanic eruption.

Practice

Volcano >>

Watch here for an example to #1

Read about the interactions between spheres when Mount St. Helens erupted. Fill in the name of the sphere (geosphere, atmosphere, hydrosphere, biosphere) that were involved in each interaction. Then list the spheres in order as a cause-and-effect chain.

Example Video (See ho	w the first one is d	<u>lone)</u>			
1. Volcanoes (an event	in the <u>geosphere</u>) release a large	amount of parti	culate matter into tl	ne <u>atmosphere</u> .
These particles serve as	s nuclei for the for	mation of water drop	olets (). Rainfall ()
often increases following	g an eruption, stim	nulating plant growth	ı (). Particulate matte	er in the air
() falls out	, initially smotherir	ng plants (), but ultimately	enriching the soil	()
and thereby stimulating	plant growth ().			
<u>Volcano</u> >>geosphe	ere >>	_ >> >>	>>	>>	>>
>>>					
2. Volcanoes (events in	the) may release a sub	stantial amoun	of hot lava (), which
causes mountain glacie	rs ()	to melt. Mudflows	()	and flooding may	occur
downstream from volca	noes and may inur	ndate streamside co	mmunities ().	
<u>Volcano</u> >>	>>	_>>	>>	_>>	
3. Volcanoes (events of	the) release a large an	nount of carbon	dioxide (), the raw
material for sugar produ	ıction in plants (). This m	nay increase ph	otosynthetic produ	ction and
eventually increase the	amount of biomas	s, which, after a ver	y long time, for	ms coal and oil dep	osits
().					
Volcano >>	>>	>>	>>		
4. Volcanoes () may emit lar	ge quantities of sulf	ur dioxide. Wh	en atmospheric sul	fur dioxide
()combine	es with water (), sulfuric and	d sulfurous acid	form. Rain () may
bring these acids to the	Earth, acidifying s	soils ()	, lakes and rive	rs ().	Acidic water
leaches nutrients from t	he soil () into the water t	able (hydrosph	ere), making the so	oil less fertile for
plants (), a	and the subterrane	ean water supply () less	potable for humans	S
(). Acid ra	ain falling on lakes	and streams reduce	es the pH of the	water (), which
may result in a decrease	e in phytoplankton	and zooplankton gr	owth (). If photosyn	thesis is
reduced, atmospheric c	oncentrations of ca	arbon dioxide can b	uild up and stim	nulate global warmi	ng
() which m	nay contribute to in	ncreased melting of	glaciers ().	