10WP Notes

Vertical Motion Word Problems

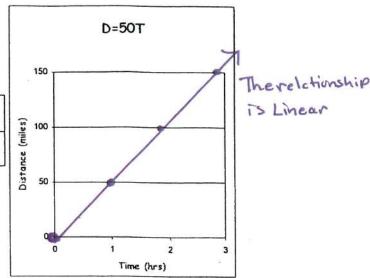
I. Review Distance Models: The formula used is: D=R.T

⇒ D= distance

R= rate T= time

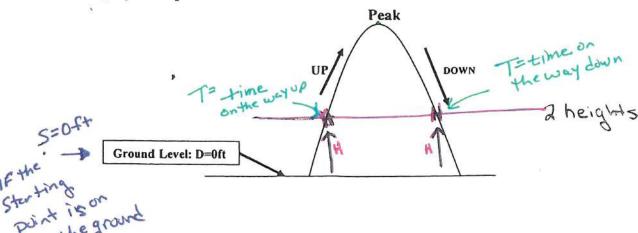
=> Rate is a constant and the relationship is Linear

Example: A car travels at 50mph. How far will the car travel in 0, 1, 2, 3 hours? Complete the table and graph.


EQ: D = 50T

Time (hrs)	0	1	2	3
Distance (miles)	0	50	100	150

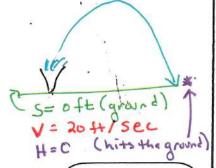
KI: DISTANCE - FIND IT


RATE - 50 mph

Time - 0, 1, 2, 3 hrs

- II. Vertical motion models describes the height of an object that is

 Propelled into the air, but has no power to keep it self in the
 - Equation: H=-16T2+VT+S (based on units in feet & seconds)
 - " H= height of the object (in feet)
 - " T= time the object has been in the air (in secondal
 - · V= INITAL VERTICAL relocity (in ft/second
 - S= INITIAL HEIGHT (in ft)
- takes into account the effect of gravity but ignores other, less significant, factors such as air resistance.
 - O Vertical motion problems do NOT have a constant rate and the shape of the graph is a parabola.



Solve Polynomial Equations in Factored Form

Your Notes

KEYINFO

Looking for time (T)

The solution t = 0 means that before the water is sprayed, its height above the ground is 0 feet.

Example 4 Solve a multi-step problem

Fountain A fountain sprays water into the air with an initial vertical velocity of 20 feet per second. After how many seconds does it land on the ground?

SOLVE BY FACTORING:

Step 1 Write a model for the water's height above ground. $h = -16t^2 + vt + s$ Vertical motion model

$$h = -16t^{2} + vt + s$$

$$h = -16t^{2} + 20t + 0$$

$$h = -16t^{2} + 20t + 0$$

$$h = -16t^{2} + 20t + 0$$

$$Simplify.$$
Vertical motion model
$$h = -16t^{2} + 20t + 0$$

$$Simplify.$$

Step 2 Substitute O+ for h. When the water lands, its height above the ground is O feet. Solve for t.

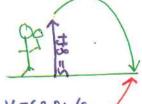
The water lands on the ground 1.25 seconds after it is sprayed.

T=0 seconds is the time the water initially came out of the fountain.

Now Solve with the Quadratic Formula:

$$A = -1b \quad B = 20 \quad C = 0$$

$$X = -20 \pm \sqrt{400 - 4(-16)(0)} = -20 \pm \sqrt{400}$$


$$= -32$$

$$X = -20 + 20$$
 $X = -20 - 20$
 $X = 0$ $X = -1.25$

Goal • Factor trinomials of the form $ax^2 + bx + c$.

Your Notes

Keyinfo

Example 4 Write and solve a polynomial equation

Tennis An athlete hits a tennis ball at an initial height of 8 feet and with an initial vertical velocity of 62 feet per second.

- a. Write an equation that gives the height (in feet) of the ball as a function of the time (in seconds) since it left the racket.
- b. After how many seconds does the ball hit the ground?

Solution

a. Use the VERTICAL MOTION MODEL to write an equation for the height h (in feet) of the ball.

$$h = -16t^2 + vt + s$$

$$h = -16t^2 + 62t + 8$$

$$V = 62 \text{ and } s = 8$$

$$EQUATION TO SOLUE$$

b. To find the number of seconds that pass before the ball lands, find the value of t for which the height of the ball is o . Substitute o for h and solve the equation for t.

 $O = -16t^2 + 62t + 8$ Substitute of for h. $O = -2(8T^2 - 31T^{-4})$ Factor out -2. O = -2(8T + 1)(T - 4)Factor the trinomial. 8T + 1 = 0 or T - 4 = 0Zero-product property O = -4 + 1 = 0Solve for t.

A negative solution does not make sense in this situation.

The tennis ball hits the ground after 4 sec.

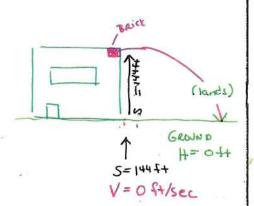
$$X = \frac{-62 \pm \sqrt{3844 - 4(-16)(8)}}{a(-16)} = \frac{-62 \pm \sqrt{4356}}{-30} = \frac{-62 \pm 66}{-30}$$

$$X = \frac{-62 \pm \sqrt{3844 - 4(-16)(8)}}{a(-16)} = \frac{-62 \pm 66}{-30}$$

$$X = \frac{-62 + 66}{-32}$$
 $X = \frac{-62 - 66}{-32}$
 $X = -62 - 66$
 $X = -62 - 66$
 $X = -62 - 66$
 $X = -62 - 66$

SOLVE BY

FACTORING


QUAD.

Formula

977 Factor Special Products

Goal · Factor special products.

KEY INFORMATION!

Example 4 Solve a vertical motion problem

Falling Object A brick falls off of a building from a height of 144 feet. After how many seconds does the brick land on the ground?

Solve by Factoring:

Use the vertical motion model. The brick fell, so its Initial vertical velocity is (). Find the value of time t (in seconds) for which the height h (in feet) is _____

$$h = -16T^{2} + \sqrt{1+8}$$

$$O = \frac{-16T^{2} + OT + 144}{-16T^{2} + 144}$$

$$O = \frac{-16}{-16} \left(\frac{T^{2} - q}{T^{2}}\right)$$

$$O = \frac{-16}{-16} \left(\frac{T^{2} - q}{T^{2}}\right)$$

$$O = \frac{-16}{-16} \left(\frac{T^{2} - q}{T^{2}}\right)$$

$$O = \frac{-16}{-16} \left(\frac{T^{2} - q}{T^{2} - q}\right)$$

$$O = \frac{-16$$

The brick lands on the ground 3seconds after it falls.

Now Solve with the Quadratic Formula:

$$A = -16 \qquad B = 0 \qquad C = 144$$

$$X = -0 \pm \sqrt{0 - 4(-16)(144)}$$

$$= 0 \pm \sqrt{9216} \qquad 0 \pm 96$$

$$= -32$$

$$= -32$$

$$X = 0 + 96$$

$$= -32$$

$$= -32$$

$$= -32$$

$$= -32$$

$$= -32$$

For the following word problem:

5 = storting height (ft)

(a) Sketch and label the graph. Include units and label the variables.

(b) Write the model for height as a function of time using function notation.

(c) Use the quadratic formula to solve. Clearly show your work!! Round solutions to "ONE DECIMAL". Circle your solutions.

V= initial velocity (F+/sec)

(d) Answer question in a complete sentence.

A What If? -athlete hits the tennis ball with an initial vertical velocity of 20 feet per second from a height of 6 feet. After how many seconds does the ball hit the ground?

V= 20 St/sec

h = height on the Porchola (ft)

$$0 = -16T^{2} + 20T + 6$$

$$A = -16 \quad B = 20 \quad C = 6$$

$$X = -20 \pm \sqrt{400 - 4(-16)(6)}$$

$$X = -20 \pm \sqrt{784}$$

$$-32$$

$$X = -20 + 28$$

$$X = -20 - 28$$

$$-32$$

$$X = -\frac{20 + 28}{-32}$$

$$X = -\frac{25}{12}$$

Jump Rope A child jumping rope leaves the ground at an initial vertical velocity of 8 feet per second. After how many seconds does the child land on the ground?

V=8ft/sec

B

$$0 = -16T^{2} + 8T + 0$$

$$A = -16 \quad B = 8 \quad C = 0$$

$$X = -8 \pm \sqrt{64 - 4(-16)(6)}$$

$$2(-16)$$

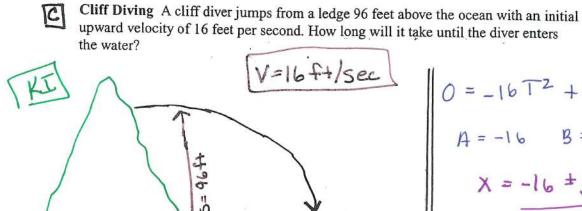
$$X = -8 \pm \sqrt{64}$$

$$-32$$

$$X = -8 - 8$$

$$-32$$

$$X = 0$$


$$X = -5 - 8$$

$$-32$$

$$X = -5 - 8$$

$$-32$$

$$X = -5 - 8$$

$$0 = -16T^{2} + 16T + 96$$

$$A = -16 \quad B = 16 \quad C = 96$$

$$X = -16 \pm \sqrt{356 - 4(-16)(96)}$$

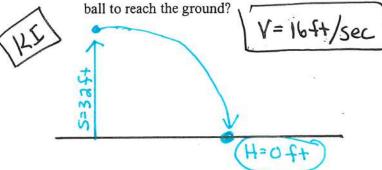
$$A = -16 \pm \sqrt{6400}$$

$$A = -16 \pm \sqrt{6400}$$

$$A = -16 + 80$$

$$A = -16 + 80$$

$$A = -16 - 80$$


$$A = -32$$

$$X = -32$$

$$X = -32$$

$$X = -32$$

Tennis Ball For a science experiment, you toss a tennis ball from a height of 32 feet with an initial upward velocity of 16 feet per second. How long will it take the tennis

$$0 = -16T^{2} + 16T + 32$$

$$A = -16 \quad B = 16 \quad C = 32$$

$$X = -16 + \sqrt{356 - 4(-16)(33)}$$

$$2(-16)$$

$$X = -16 + \sqrt{3304}$$

$$-32$$

$$X = -16 + 48$$

$$-32$$

$$X = -16 - 48$$

$$-32$$

$$X = 2$$

$$X = 2$$