Answer Key ## Lesson 10.4 ## **Practice Level C** **1.** 74° **2.** 66° **3.** 126° **4.** 62° **5.** 132° **6.** 42° **7.** 32° **8.** 43° **9.** 120° **10.** 90° **11.** 42.5° **12.** 48.5° **13.** 42.5° **14.** 47.5° **15.** 48.5° **16.** 95° **17.** 180° **18.** yes **19.** no **20.** no **21.** x = 7 **22.** x = 102 **23.** x = 23.25 **24.** x = 8 **25.** w = 65, x = 66, y = 115, z = 114 **26.** x = 91.5, y = 35, z = 88.5 **27.** Sample answer: Draw \overline{DG} . Because \overline{DF} is a diameter, $\angle DGF$ is a right angle inscribed in $\bigcirc C$. Then \overline{DG} \square \overline{FG} and $\angle DGF \cong \angle DGE$, because perpendicular lines intersect to form four right angles. It is given that $\overline{FG} \cong \overline{GE}$ and by the Reflexive Property, $\overline{DG} \cong \overline{DG}$. Then by SAS, $\triangle DGF \cong \triangle DGE$, and corresponding parts of \cong triangles are \cong , so $\overline{DF} \cong \overline{DE}$. Therefore, $\triangle DEF$ is isosceles by definition. **28.** Sample answer: Draw \overline{PR} , \overline{PS} , and \overline{PT} . \overline{PR} is a diameter of $\bigcirc Q$, so $\angle PSR$ is a right angle inscribed in $\bigcirc Q$. Then $\overline{PS} \square \overline{RT}$, and $\triangle PSR$ and $\triangle PST$ are right triangles. $\overline{PR} \cong \overline{PT}$ because they are radii of the same circle, and $\overline{PS} \cong \overline{PS}$ by the Reflexive Property. So, $\triangle PSR \cong \triangle PST$ by HL. Therefore, $\overline{RS} \cong \overline{RT}$ because they are corresponding parts of $\cong \triangle S$.