Mendelian Genetics Packet

Name:	 Period:	_Date:

GENETIC FACTS & FALLACIES PRE-QUIZ

- **T** F 1. Certain acquired characteristics, such as mechanical or mathematical skill, may be inherited.
- **T F** 2. Identical twins are always of the same sex.
- **T** F 3. Fraternal twins are more closely related to each other than to other children in a family.
- **T F** 4. The father determines the sex of a child.
- T F 5. Each parent contributes half of a child's genetic makeup.
- **T F** 6. Certain drugs or alcohol can cause birth defects in the fetus.
- T F 7. Colorblindness is more common in males than in females.
- T F 8. A person may transmit characteristics to offspring, which he, himself does not show.
- **T** F 9. Identical twins are more closely related than fraternal twins.
- **T** F 10. Certain inherited traits may be altered by the stars, moon, or planets early in development.
- **T F** 11. Humans have 23 chromosomes.
- **T** F 12. The tendency to produce twins may run in families.
- T F 13. A craving for a food such as strawberries may cause a birthmark on an unborn child.
- T F 14. Many of a person's inherited traits are not apparent.
- **T F** 15. The parent with the stronger "will-power" will contribute more to a child's inheritance than the other parent.
- **T** F 16. If a person loses a limb in an accident, it is likely that he or she will have a child with a missing limb.
- **T F** 17. Gregor Mendel was a monk and is known as the "Father of Genetics" based on his experiments with pea plant.
- **T** F 18. Children born to older parents may have a higher change of birth defects than younger parents.
- T F 19. The total number of male births exceeds female births each year.
- **T** F 20. If a male "mutt" dog mates with a pedigree (show quality) female dog, all future litters that the female would have (even with other dogs) can have traits from the "mutt" dog.

GENETIC TERMINOLOGY:

•	crial acroi	ristic that can be passed from parent to offspring
	= pass	sing of traits from parent to offspring
 	= study	y of heredity
=	two forms	of a gene (dominant & recessive)
	= :	stronger of two genes expressed in the hybrid;
y a capital lo		
 	= :	gene that shows up less often in a cross; represented
letter (r)		
 	= gene	e combination for a trait (ex: RR, Rr, rr)
	= the pl	physical feature resulting from a genotype (e.g. tall,
		= gene combination involving 2 dominant or
nes (ex: RR	•	
		= gene combination of one dominant & one
		cross involving a single trait
		= cross involving two traits
	=	= used to solve genetics problems. (based on probability)
		Rr
Samuel C		CANCEL CONTROL OF THE
n of eggs		Segregation of Ileles Into sperm
eggs		
· · ·	y a capital les letter (r) nes (ex: RR	= study= two forms= y a capital letter (R)= : letter (r)= gen _= the p nes (ex: RR or rr); alse e (ex: Rr); also called

FUNDAMENTALS OF GENETICS

	= The passing of traits from
	to
Tr	ansmitted by means of information stored in molecules of
	= Scientific study of
	Based on knowledge that traits are transmitted by
	Our are made up of our, which are pieces of
	that code for certain
	 Humans have chromosomes in all your somatic (body) cells.
	chromosomes from your mom andchromosomes from your dad.
	= All the outside forces that act on an organism.
	Affects the development, later life, and the expression of hereditary traits of an organism.
	WHAT MAKES YOU WHO YOU ARE TODAY?
0	are the two great influences, acting
	together all through your life.
0	Genetic messages determine what organismsbecome.
0	The interaction of messages and the environment determines what organismsbecome.
0	Organisms inherit, not traits!

GREGO	OR MENDEL -"	" - (1865)	1
Austrian	monk		to the
	search with principles of heredity.	led to the discovery of	the
Did a s	tatistical study of traits in	garden peas over an eight year p	period.
Garden	n peas were a good choice fo	or experimentation because:	
1.	They can be	······································	
		in one of two contrasti	ng forms:
	 Height—tall/short 		
	 Seed color—yellow/gr 	een	very 900000
		plants and are v	very
	lel used logical eful	methods and kept	
		to inter	rpret results.
		of which had a dominant & a rece	
 The _	(s	nows up most often) gene or allel	e is represented with
		with	
	0	f that same letter (ex: B, b).	
ndel's tr	raits included:		
	a. Seed shape Round	d (R) or Wrinkled (r)	
	b. Seed Color Yellov		
	c. Pod Shape Smootl	• • •	
	d. Pod Color Green (G) or Yellow (g)	
	e. Seed Coat Color	Gray (G) or White (g)	
	f. Plant Height Tall ((T) or Short (t)	
	g. Flower color Purp	le (P) or white (p)	

MENDELIAN GENETICS OVERVIEW

Humans each have two sets of ____ chromosomes in their somatic (body) cells and about 30,000 genes. • The different forms or types of a specific gene are called For example, a GENE for eye color might have a blue_____, a brown_____, and a green . • Because our chromosomes are in _____sets, we have two copies of each gene, _____from our ____and ____from our____. If both of our parents gave us the ______of gene - the same allele - then we are: _____or pure (on both sets of our chromosomes, on both sets of genes; the allele is the). If one parent gave us one type of gene and the other parent gave us a different type, then we are: _____ or hybrid - we have two different alleles. With MENDELIAN traits (the type of traits that Mendel studied), heterozygotes DO NOT have a _____of the two alleles. Instead, one type of allele dominates o We show the characteristics of this allele only - it is the trait. o The other version of the trait is still there on half of our chromosomes (so we might still pass it on to our children, depending on meiosis) BUT it DOES NOT affect us right now—it is the _____trait. Whether we are heterozygous, homozygous with the dominant trait, or homozygous with the recessive trait it is called our _____ (type of genes that we have). Which trait we _____show is our _____(the type of allele that is expressed). For example, if the ______of the eye color gene is brown and the of the eye color gene is **blue**, then the person could have the following possibilities:

1. Two blue alle	eles, bb (one from	, one
from).	
Genotype wou	ld he	

from).	
Genotype would be	
Phenotype would be	
2. Two brown alleles, BB (one from mom, one from dad).	
Genotype would be	_ Phenotype
would be	
3. One brown and one blue allele, Bb (one from mom, one from dad).	Genotype
would be	
Phenotype would be	
 When onlytrait is being studied in a genetic cross, it is called a 	
When parent organisms, called the, are crossed offspring are the first filial, or,	_
When organisms of the F1 generation are crossed, their offspring make filial or,	up the second
MENDEL'S EXPERIMENTS:	
· Mendel produced pure strains by allowing the plants to self-pollinate for seve	ral generations.
• These strains were called the $\underline{\hspace{1cm}}$ generation or P_1 strain.	
 These strains were called thegeneration or P_1 strain. Mendel cross-pollinated two strains and tracked each trait through two gener (ex: TT \times tt) 	rations.
 Mendel cross-pollinated two strains and tracked each trait through two gener 	rations.

P ₁ cross =	
	F ₁ Genotypic ratio =
	F 1 Phenotypic ratio =
• The	offspring of this cross were allshowing ONLY the & were called thegeneration.
 Mendel then c 	ossed two of his F_1 plants and tracked their traits; known as an
	= plant height <u>s</u> = T (tall), t (short)
F ₁ cross =	
	F ₂ Genotypic ratio =
	F ₂ Phenotypic ratio =
(1/4) showed t	s were crossed, 75% (3/4) of the offspring showed the dominant trait & 25 ne recessive trait WAYS create
	of this cross were called the
RES	SULTS OF MENDEL'S EXPERIMENTS:
 Inheritable 	are responsible for all heritable characteristics.
•	is based on
	is based on, one from the mother and
the other from	
_	individuals are homozygous (both alleles) are the same.
 Formulated 3 	aws of heredity in the early 1860's.

MENDEL'S 3 LAWS OF HEREDITY:

	MICHOLLS 3 LAWS OF FILE	KLUII	7 •
1	states that when different alle	les for a ch	aracteristic are
	therited (heterozygous), the trait of only one (the dominant ne) will be expressed. The recessive trait's phenotype only	Trait	: Pod Color
αļ	opears in true-breeding (homozygous) individuals.	Genotypes:	Phenotype:
		GG	Green Pod
_	= states that each energy enetic trait is produced by a pair of alleles which separate segregate) during reproduction.	Gg	Green Pod
`	Rr	gg	Yellow Pod
	Rr		
	 Explains the disappearance of a specific trait in the F reappearance in the F₂ generation. 	1 generation	n and its
3	= stat	tes that ead	ch factor (gene) is
dist	ributed (assorted) randomly and independently of one anothe(egg or sperm).	er in the for	rmation of
	 Explains that different traits are 		
	inherited, if on diffe	rent	RrYy
	chromosomes - Ex: wrinkled seeds do not have to be yellow. The	y can be	888°
	green. - Ex: A gamete with RrYy]	RY Ry rY 1
	 R and r - separate into different gametes 		
	 o Y and y - Separate into different gametes 	5	
	 They can then recombine 4 ways to form g 	gametes: R }	/Ry rY ry
	INHERITANCE OF HUMAN TRAITS:	DOMIN	ANT/
	RECESSIVE	- •	
No c	cleft in chin / Cleft in chin recessive		

Straight thumb / Hitch-hiker's thumb

Hair on back of hand / no hair on back of hand

Inability to fold tongue/ ability to fold tongue

Tongue roller/ Non-roller

Dark hair/ Light hair

Hitch-hiker's thumb

Non-red hair/ Red hair

Widows peak/ Straight or curved hairline

White forelock/ Normal hair

Freckles/ Normal

Dimples/ No dimples

Brown eyes/ Blue eyes

Normal eyesight/ Nearsighted

Almond shaped eyes/ Round eyes

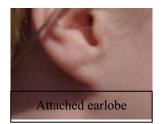
Long eyelashes/ Short eyelashes

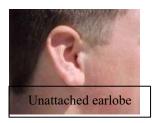
Broad nostrils/ Narrow nostrils

Roman nose/ Straight nose

Free ear lobe/ Attached ear lobe

Bent little fingers/ Parallel little fingers


Left over right thumb/ Right over left thumb


A or B blood/ O blood

RH+ blood/ RH- blood

Normal clotting/ Hemophilia

Normal / Allergy

HUMAN GENETICS

	Fraternal vs. Identical Twins: develop from afertilized egg that splits shortly after fertilization
	- Since they developed from theegg they have exactly the
	same
•	eggs that are fertilized by
	sperms
	- They aredifferent people
	By studying identical twins, geneticists have learned thatseem to have a
	on such traits as height,
	weight, blood pressure, speech patterns, and gestures.

•	vered thatplay a role in some	
	problems once thought to be caused only b	oy environment
factors.		
_	enes can cause a susceptibility to nd certain types of cancer.	such
as alaboros al	ia corrain 17 pos or cancor.	
Inherited Diseases:		
and	MAY be	
Aids (HIV) can be passed onto of	fspring	
o Ex: Common cold (rhino virus) co	an't be passed onto the offspring	
Disorders resulting from abnormalikely to be based on genes	al structure or function of body organs are	e
Some disorders that are associat	ed with genes are:	
-diabetes - respiratory al - sickle cell anemia- etc	llergies - colorblindness- down syndrome -	· farsightednes
- We will learn more about geneti	a diametera in a complete Comita	
x Determination:	= determine the sex of an individua	al The Y
chromosomes (<u>XX</u>) produce a		ai mex
	h a Y chromosome (XY) produces a	
·	gamete bearing a Y chromosome, the	
· ·	mines theof the child	
chromosome does no	me contains additional genetic information t have, therefore a male child actually inh from histhan his father	erits more
San Linkad Tuaita		
Sex-Linked Traits:	and the second s	··· alaa\
	requently in one sex than another (usually	maies)
o Males -color blindness and	hemophilia	

They are lack genes for these	to the normal condition of traits	and the Y o	chromosom	es appear to
These traits generally	do not show up in	· · · · · · · · · · · · · · · · · · ·		
Punnett Squares:				
<u>Punnett Square</u> = used (based on probability)	to solve genetics problems.	Rr	×	Rr
Ex: Crossing two hetero	ozygous genotypes (Rr x Rr)	Segregation alleles into eg		Segregation of alleles into sperr
Remember the letters represent possible combinations.	of a genotype (R, r's) (egg/sperm)	V ₂ R Eggs V ₂ r	72 R	1/4 1/4
Test Cross Pun	nett Square:		74	74
whether it is heterozyg	ng at an organism that shows the cous (Rr) or homozygous(RR) for sype of an organism showing the	r that trai	†	trait
=	the organism of unknown domin (rr) organ		ype is cros	ssed with a

IN CLASS PRACTICE PROBLEMS - MONOHYBRIDS (one trait)

Black coat color in guinea pigs is do	minant over white coat color. Look at the
"Example 1" cross below. This cross	s shows a hybrid black guinea pig with pure
white guinea pig.	
P_1 cross:X	
F ₁	genotypes:
P ₁ cross: x	
F ₁	phenotypes:
Then try solving "Example 2".	
, 3 1	
EXAMPLE 2:	
Cross a hybrid black and a hybrid b	olack guinea pig.
Black Trait	
White Trait	
	F_1 genotypes:
Hybrid black	
Hybrid black	
	F_1 phenotypes:

NOW YOU TRY SOME:

- 1.) In pigs, the white color (W) is dominant; the black color (w) is recessive. Using Punnett squares, show the expected results of the following crosses.
- a) A pure (homozygous) white pig is mated with a black pig.

	F ₁ G =
	F ₁ P=

b) Show a cross between two of the F_1 offspring from number 1a. Determine the genotypes and phenotypes of the offspring in the F_2 generations.

MONOHYBRID PRACTICE

rep rec usi	Crossing Guinea Pigs. In Guinea pigs black hair dominates over white. Thus a pure black is presented by BB, a hybrid by Bb, and a white by bb. It should be noted that whenever the cessive trait appears it must be pure. Try working out the following crosses in guinea pigs ng the Punnett square method. Determine the genotypes and phenotypes in each poss.
<i>A</i> .	homozygous black × homozygous black P cross: x
В.	pure white x pure white P cross: x
<i>C</i> .	pure black x pure white P cross: x
D.	hybrid black x homozygous black P cross: x

E. heterozygous black x heterozygous black P cross: __ x __ _

Bikini Bottom Genetics

Name						iod:	Date	
	ists at l	Bikini Bottoms hav	e been in	vestigati	ng the gen	ietic make	eup of the orga	nisms
		unity. Use the info		O	0 0			
questi	on.							
1. For	each ge	enotype below, indic	cate wheth	ner it is a	heterozygo	ous (He) O	R homozygous	(Ho).
		TT	Bb	DD _	Ff	tt	dd	
		Dd	££	Т4	hh	DD	EE	
		Du	11	_ 11	nn	DD	FF	
a)	Which	of the genotypes in	#1 would	d be consi	dered pure	ebred?		
b)	Which	of the genotypes in	ı#1 would	d be hybri	ids?			
2. Det	ermine	the phenotype for ea	ach genoty	ype using	the inform	nation prov	vided about Spo	ongeBob.
a)	<u>Yellow</u>	y body color is domi	nant to bl	<u>ue</u> .				
	YY		Yy		y	y		W
b)		e shape is dominant						
	SS		Ss		ss			W
3. For	each ph	enotype, give the g	enotypes	that are po	ossible for	Patrick.		I - €
9	a)	A tall head (T) is d	ominant t	o short (t,	<u>).</u>			
1		Tall =			Shor	·t =		
	b)	Pink body color (P) is domir	ant to ye	llow (p).			
8		Pink body =			Yello	w body =		
	4.	SpongeBob Square				sie Round	pants at a danc	e. SpongeBob is
		us for his square sha	ape, but S	pongeSus	sie is round	l. Create a	Punnett square	to show the
pos	sibilitie	s that would result i	f SpongeE	Bob and S	pongeSusi	e had child	dren. HINT: Re	ad question #2!
a)	List th	e genotypes for Spo	ongeBob a	nd Spong	geSusie			

b)	What are the chances of a child with a square shape?	out of	or		
c)	What are the chances of a child with a round shape?	out of	or		
dom Patr	ick met Patti at the dance. Both of them are heterozygous for hinant over a yellow body color. Create a Punnett square to sick and Patti had children. HINT: Read question #3!	-	•		lt if
1	a) List the genotypes of Patrick and Patti	out ofo	or%		
(c) What are the chances of a child with a yellow body?	_out of	or	_%	
1	6. Everyone in Squidward's family has light blue skin, which color in his hometown of Squid Valley. His family brags that recently married a nice girl who has light green skin, which is	t they are a " _l is a recessive	purebred" lir trait.	ne. He	
	Create a Punnett square to show the possibilities that would a bride had children. Use "B" to represent the dominant gene a			s new	
]	recessive gene. a) List the genotypes of Squidward and Squidward.	nidward's new	v wife.		
	b) What are the chances of a child with	_			BA FA
	c) What are the chances of a child withd) Would Squidward's children still be				
		•		•	
	7. Assume that one of Squidward's sons body color, married a girl that was also heterozygous. Create possibilities that would result if they had children.			_	olue
	a) List the genotypes of Squidward's son and his	wife.			
	b) What are the chances of a child with light blue		%		
	c) What are the chances of a child with light green	n skin?	%		

8. Mr. Krabs and his wife recently had a Lil' Krabby, but it has not been a happy occasion for them. Mrs. Krabs has been upset since she first saw her new baby who had *short eyeballs*. She claims that the hospital goofed and mixed up her baby with someone else's baby. Mr. Krabs is homozygous for his tall eyeballs, while his wife is heterozygous for her tall eyeballs. Some members of her family have short eyes, which is the recessive trait. Create a Punnett square using "T" for the dominant gene and "t" for the recessive one.

Date:				Period:	
	_				
<u>Directions:</u> Use	e your knowledge o	f genetics to comp	lete this work	sheet.	
1. Use the info	ormation for Spong m.	eBob's traits to wi	rite the phen o	otype (physical	appearance)
Trait	DOMINANT Gene	RECESSIVE Gene	a) LL		e) Rr
Body shape	C (C)		b) yy		_ f) ll
Body color	Squarepants (S) Yellow (Y)	Roundpants (s) Blue (y)	c) Ss		g) ss
Eye shape	Round (R)	Oval (r)	d) RR -	·	h) Vv -
Nose style	Long (L)	Stubby (1)	u) KK _		ш) ту
2. Ose the fine	ormation in the cha				
		low body			
	b) Ro	undpants		f) Round eyes	
	b) Roo	undpants val eyes		f) Round eyes g) Squarepan	ts
3. Using the ir	b) Roo	val eyes		f) Round eyes g) Squarepan h) Blue body -	ts
	b) Roo c) O d) Lon	undpants val eyes g nose nart above, determ	ine the genot	f) Round eyes g) Squarepan h) Blue body -	ts tts tthe following
a) Hete	b) Roo c) O d) Lon nformation in the cl	val eyes g nose hart above, determ	ine the genot	f) Round eyes g) Squarepan h) Blue body - ypes for each o	ts f the following

	List the genotypes for SpongeGerdy's father and SpongeGerdy's mother.	
c)	That is Gerdy's genotype?	
d)	ongeBillyBob is heterozygous for his squarepants shape. What is his genotype?	
5.	Complete the punnett square to show the possibilities that would result if SpongeBillyBob & spongeGerdy had children. List the genotypes for SpongeBillyBob and SpongeGerdy.	
	List the possible genotypes and phenotypes for the kids.	
	G:	
	P:	
	What is the probability of kids with squarepants?%	
	What is the probability of kids with roundpants? %	

DIHYBRIDS (two traits)

Because each parent o		e using	_traits, each one should have <u>4</u> alleles,
Each gamete produced	d by the P_1 gener	rations will co	ntain 2 alleles, one for each trait.
a homozygous yellow o Traits = seed color o Alleles G	and short	nt tall	ill and having green seeds is crossed with
Cros	s:	 	
_	different game	etes:,	y using the FOIL method.

		<u>Phenotypes:</u>

Genotypes:

MENDELIAN GENETICS REVIEW QUESTIONS

Lesson 1 Questions: Introduction to Genetics

1)	What are two factors that affect who you are?
	a)
	b)
2)	is the passing of traits from parent to offspring.
3)	is the "Father of Genetics".
4)	What organism did Mendel use to conduct his research?5)
	are two forms of a gene (dominant & recessive)
6)	What is the difference between a phenotype and a genotype?
7)	
7)	How would you write a homozygous dominant genotype (use the first letter of the alphabet)

8)	How would you write a homozygous recessive genotype (use the first letter of the alphabet)
9)	How would you write a heterozygous genotype (use the first letter of the alphabet)
10)	A homozygous genotype can also be called
11)	A heterozygous genotype can also be called a
12)	What is the difference between the P generation and the F ₁ generation?
13)	is the study of heredity
14)	How many chromosomes would a human have in their skin cells?
15)	How many chromosomes did you inherit from your mom? from your dad?
ه ا	sson 2 Questions: Mendel's Law's
1)	A cross between two hybrids will ALWAYS create what phenotypic ratio?
2)	The is based on the genotype.
3)	What are Mendel's three laws?
	a
	b
	c
4)	law states that each factor (gene) is distributed (assorted) randomly and independently of one another in the formation of gametes (egg or sperm).
5)	
-)	law states that when different alleles for a characteristic are inherited (heterozygous), the trait of only one (the dominant one) will be expressed.
6)	law states that each genetic trait is produced by a pair of alleles which separate during reproduction

Lesson 3 Questions: Human Genetics & Punnett Squares

1)	Are fraternal twins or identical twins more closely related? a. How do you know?	1
2)	What sex chromosomes are present for a male? a female?	
3)	Which parent determines the sex of the child?a. Why?	
4)	In guinea pigs black (B) hair dominates over white. Cross a homozygous black guinea pig with a white guinea pig. What are the genotypic and phenotypic ratios for the F_1 generation and the F_2 generation?	
	F ₁ genotypic ratio:	
	F ₁ phenotypic ratio:	
	F ₂ genotypic ratio:	
	F ₂ phenotypic ratio:	
5)	How could a guinea pig breeder determine if a black guinea pig is homozygous dominant or heterozygous?	
6)	Suppose that black hair (B) is dominant over blonde hair (b) and brown eyes (E) are dominant over blue (e). What percent of offspring could be expected to have <i>black hair and blue eyes</i> if the father has black hair (homozygous) and brown eyes (heterozygous) and the mother has blonde hair and blue eyes.	
	a. Father's genotype =	

b. Mom's genotype = _____

hair & blue e DIHYBRID traits)				
DIHYBRID traits) HOMEWO SET In a dihybrid oss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and own eyes (E) are dominant over blue (e). That percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and t mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring				% b
DIHYBRID traits) HOMEWO SET In a dihybrid oss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and rown eyes (E) are dominant over blue (e). hat percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and t mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring				hair & blue e
DIHYBRID traits) HOMEWO SET In a dihybrid oss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and own eyes (E) are dominant over blue (e). hat percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and t mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring				
HOMEWO SET In a dihybrid oss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and own eyes (E) are dominant over blue (e). hat percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and t mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring				DIHYBRID
In a dihybrid loss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and own eyes (E) are dominant over blue (e). That percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and to mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring the possible combinations of the number of po				traits)
In a dihybrid oss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and own eyes (E) are dominant over blue (e). hat percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and t mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring				HOMEWO
oss, when two traits are considered, the number of possible combinations of the fspring increases. Suppose that black hair (B) is dominant over blonde hair (b) and rown eyes (E) are dominant over blue (e). hat percent of offspring could be expected to have blonde hair and blue eyes if: 2. The father has black hair (heterozygous) and brown eyes (heterozygous) and t mother has blonde hair and blue eyes. Genotype of father = BbEe Genotype of mother = bbee Complete the cross using the Punnett square. Determine what percent of offspring				
	mother house Genote Genote Complete the	as blonde hair o ype of father ype of mother e cross using th	ind blue eyes = <u>BbEe</u> = <u>bbee</u> e Punnett squ	
% blande hein & blue eve				% blonde hair & blue eve
% blonde hair & blue eye				% blonde hair & blue eye

Geno Geno Complete th	type of fath type of moti	ner = her = quare below. 1	 s) and brown eyes (heterozygous). hat percent of offspring will have
			% blonde hair & blue eyes

DIHYBRID (2 traits) HOMEWORK SET

1. Mendel found yellow seed color was dominant (Y) trait over green (y) in garden peas. He found white seed coat was the recessive (w) trait and black was the dominant (W) trait. What would the F ₁ genotype and phenotype be from crossing parents that were pure yellow seed color and black seed coat with pure green seed color and white seed coat?					
P cross =	×		_		
				F ₁ Genotype:	

P cross =	over white	color (b). A rough	coated and blac	k guinea pig, who	(r) and black color (B) is dominant ose mother was smooth and white is and phenotypes of the offspring?
Phenotype: F1 3. In squash the color white (W) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F_1 generation b) Then determine the phenotypic ratio of the F_2 generation (obtained by crossing the F_1 plants). P cross = X	P cross =	X			
3. In squash the color white (W) is dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F1 generation b) Then determine the phenotypic ratio of the F2 generation (obtained by crossing the F1 plants). P cross = X				_	F ₁ Genotype:
3. In squash the color white (W) is dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F ₁ generation. b) Then determine the phenotypic ratio of the F ₂ generation (obtained by crossing the F ₁ plants). P cross = X					
3. In squash the color white (W) is dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F ₁ generation. b) Then determine the phenotypic ratio of the F ₂ generation (obtained by crossing the F ₁ plants). P cross = X					
3. In squash the color white (W) is dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F ₁ generation. b) Then determine the phenotypic ratio of the F ₂ generation (obtained by crossing the F ₁ plants). P cross = X					
3. In squash the color white (W) is dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F ₁ generation. b) Then determine the phenotypic ratio of the F ₂ generation (obtained by crossing the F ₁ plants). P cross = X					
3. In squash the color white (W) is dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F ₁ generation. b) Then determine the phenotypic ratio of the F ₂ generation (obtained by crossing the F ₁ plants). P cross = X					
dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F_1 generation. b) Then determine the phenotypic ratio of the F_2 generation (obtained by crossing the F_1 plants). P cross = X					Phenotype: F1
dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F_1 generation. b) Then determine the phenotypic ratio of the F_2 generation (obtained by crossing the F_1 plants). P cross = X					
dominant over yellow and disk shape (D) is dominant over sphere shape. a) When crossing two homozygous squashes, one white sphere and the other yellow, disk. Determine the genotypes and phenotypes of the F_1 generation. b) Then determine the phenotypic ratio of the F_2 generation (obtained by crossing the F_1 plants). P cross = X					3 In squash the color white (W) is
	sphere and t	the other yellow, o	disk. Determine	the genotypes o	dominant over yellow and disk two homozygous squashes, one white and phenotypes of the F1 generation.
F ₁ Genotype:	P cross =	X			
					F ₁ Genotype:

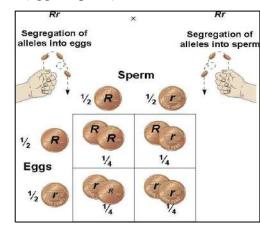
				F ₁ Phenotype:
P cross =	×	·		
				F ₂ Phenotype:
	ne genotype and p zygous disk plant		ne offspring, if o	one of the F1 plants in #3 is crossed with
P cross =	×			
				Genotype:
				Dh an a trun a s
				Phenotype:

a. A plant th	at is heterozyao	ous for yellow	seed color and	homozygous for a wrinkled coat is	5
•		-		r a smooth coat.	
	×	_			
				Genotype:	
T	T		1		
				Phenotype:	
				i nenotype.	
•		•		d heterozygous for a smooth coat r a smooth coat.	is
•	vith a plant that	•			is
crossed v	vith a plant that	•			is
crossed v	vith a plant that	•		r a smooth coat.	is
crossed v	vith a plant that	•		r a smooth coat.	is
crossed v	vith a plant that	•		r a smooth coat.	is
crossed v	vith a plant that	•		r a smooth coat.	is
crossed v	vith a plant that	•		Genotype:	is
crossed v	vith a plant that	•		r a smooth coat.	is

					Genotype:
					_
					Phenotype:
					-
Л	DRE GENETICS RE	VIEW OII	ESTIONS:		
MC	ORE GENETICS RE	VIEW QU	ESTIONS:		
				arent to offspring:_	_
		at can be p	assed from p		
2.	Any characteristic the	at can be p	assed from p		
M (1. 2. 3.	Any characteristic the The study of heredity The physical feature	at can be p /: resulting fr	assed from p	pe:	
1. 2. 3.	Any characteristic the The study of heredity The physical feature	at can be p /: resulting fr olves a sing	assed from prom a genotypgle trait:	oe:	
. 2. 3.	Any characteristic that The study of heredity The physical feature A cross that only inventors	at can be p /: resulting fr olves a sing	assed from p om a genotyp gle trait:	oe:on	
1. 2. 3.	Any characteristic the The study of heredity The physical feature A cross that only inverse A tool used to solve probability:	at can be p /: resulting fr olves a sing	assed from proma genotypgle trait:	on	
]. 2. 3.	Any characteristic the The study of heredity The physical feature A cross that only inverse A tool used to solve probability: The passing of traits	at can be p /: resulting fr olves a sing genetic pro	rassed from p rom a genotyp gle trait: blems based	on	

9. The father of modern genetics:

c. A plant that is heterozygous for yellow seed color and has a wrinkled coat is crossed with


10.	A cross involving two traits:
11.	Two forms of a gene (dominant & recessive):
12.	A combination of genes with one dominant & one recessive allele:
13.	The resulting offspring of the parent organisms or P ₁ :
14.	When different alleles are inherited(hybrid), only the dominant one will be
	expressed:
15.	Gene that shows up less often in a cross; represented by a lowercase letter:
16.	A factor that can affect how genes are expressed:
17.	Parent organisms are referred to as the:
18.	Determines the sex of the child:
19.	Each genetic trait is produced by a pair of alleles which separate during reproduction:

Mendelian Genetics Vocabulary:

- 1) **Trait** = any characteristic that can be passed from parent to offspring
- 2) **Heredity** = passing of traits from parent to offspring
- 3) **Genetics** = study of heredity
- 4) **Gregor Mendel** = Father of Genetics; experimented using pea plants
- 5) Alleles = two forms of a gene (dominant & recessive)
- 6) **Dominant** = stronger of two genes expressed in the hybrid; represented by a capital letter (R)
- 7) **Recessive** = gene that shows up less often in a cross; represented by a lowercase letter (r)
- 8) **Genotype** = gene combination for a trait (ex: RR, Rr, rr)

- 9) **Phenotype** = the physical feature resulting from a genotype (e.g. tall, short)
- 10) <u>Homozygous genotype</u> = gene combination involving 2 dominant or 2 recessive genes (ex: RR or rr); also called pure
- 11) <u>Heterozygous genotype</u> = gene combination of one dominant & one recessive allele (ex: Rr); also called hybrid
- 12) <u>Law of Dominance</u> = states that when different alleles for a characteristic are inherited (heterozygous), the trait of only one (the dominant one) will be expressed. The recessive trait's phenotype only appears in true-breeding (homozygous) individuals
- 13) <u>Law of Segregation</u> = states that each genetic trait is produced by a pair of alleles which separate (segregate) during reproduction
- 14) <u>Law of Independent Assortment</u> = states that each factor (gene) is distributed (assorted) randomly and independently of one another in the formation of gametes (egg or sperm)
- 15) <u>Sex-linked traits</u> = traits that occur more frequently in one sex than the other because the genes are on the sex chromosomes
- 16) **Monohybrid cross** = cross involving a single trait
- 17) **<u>Dihybrid cross</u>** = cross involving two traits
- 18) <u>Punnett Square</u> = tool used to solve genetics problems; based on probability

