Scenario

A car traveling in a straight line to the right starts from rest at time t = 0.

At time t = 2 s, the car is traveling at 4 m/s. At t = 4 s the car is traveling at 8 m/s.

Using Representations

PART A: Scale and label the axes on the graph to the right. Using the data table below, plot a velocity vs. time graph for the car for the first 4 seconds it is traveling.

Time (s)	Speed (m/s)
0	0
1	2
2	4
3	6
4	8

DATE

Argumentation

PART B: Evidence: Calculate the slope of the velocity vs. time graph in Part A using two points on the line (NOT data points).

$$slope = \frac{rise}{run} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\left(\right) \frac{m}{s} - \left(\right) \frac{m}{s}}{\left(\right) s - \left(\right) s} = \frac{m}{s^2} = \left(\right)$$

Claim: Use the evidence above to make a claim by filling in the following blanks:

The slope of the velocity vs. time graph is equal to _____ unit . ____ is also the unit for

physical quantity

Quantitative Analysis

 $Area = \frac{1}{2}bh$

PART C: Rewrite the equation for the area of a triangle ($Area = \frac{1}{2} base \times height$) using the symbols and numbers (with units) from the graph in Part A between t = 0 and t = 4 seconds.

$$\frac{1}{\text{letter}} = \frac{1}{2} \frac{1}{\text{number (with units)}} \frac{1}{\text{number (with units)}}$$

Write a more general equation for the car using standard physics symbols (x, v_t , and t).

The area under a velocity vs. time graph represents the ________. (Hint: Check units!)