GOAL Name and sketch geometric figures.

Vocabulary

A **point** has no dimension, a **line** has one dimension, and a **plane** has two dimensions.

Collinear points are points that lie on the same line.

Coplanar points are points that lie in the same plane.

Line \overrightarrow{AB} (written as \overrightarrow{AB}) passes through points A and B.

The **line segment** AB, or **segment** AB (written as \overline{AB}), consists of the **endpoints** A and B and all points on \overline{AB} between A and B.

The ray AB (written as \overrightarrow{AB}) consists of the endpoint A and all points on \overrightarrow{AB} that lie on the same side of A as B.

If point C lies on \overrightarrow{AB} between A and B, then \overrightarrow{CA} and \overrightarrow{CB} are **opposite** rays.

Two or more geometric figures *intersect* if they have one or more points in common. The **intersection** of the figures is the set of points the figures have in common.

EXAMPLE 1 Name points, lines, planes, segments, and rays

- **a.** Give two other names for \overrightarrow{EF} . Give another name for plane A.
- **b.** Name three points that are collinear. Name four points that are coplanar.
- **c.** Give another name for \overline{EF} .
- **d.** Name a ray with endpoint \overrightarrow{E} that is an opposite ray of \overrightarrow{EC} .

Solution

- **a.** Other names for \overrightarrow{EF} are \overrightarrow{FE} and line m. Other names for plane A are plane BCD and plane CDE.
- **b.** Points *C*, *E*, and *D* lie on the same line, so they are collinear. Points *B*, *C*, *E*, and *D* lie in the same plane, so they are coplanar.
- **c.** Another name for \overline{EF} is \overline{FE} .
- **d.** \overrightarrow{ED} is a ray with endpoint E that is an opposite ray of \overrightarrow{EC} .

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company

Exercises for Example 1

Use the diagram in Example 1.

- **1.** Give two other names for \overrightarrow{CD} .
- **3.** Name a ray with endpoint F.
- **5.** Name a point that is *not* coplanar with *B*, *C*, *E*, and *D*.
- **2.** Give another name for \overline{CE} .
- **4.** Name a point that is *not* collinear with *C*, *E*, and *D*.
- **6.** Give another name for \overrightarrow{DE} .

EXAMPLE 2 Sketch in

Sketch intersections of lines and planes

Perform the indicated operations.

- **a.** Sketch a plane and a line that is in the plane.
- **b.** Sketch a plane and a line that does not intersect the plane.
- **c.** Sketch a plane and a line that intersects the plane at a point.
- **d.** Sketch two planes that intersect in a line.

Solution

a.

b.

C.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

- **d. STEP 1 Draw** one plane as if you are facing it. Shade the plane.
 - STEP 2 Draw a second plane that is horizontal.
 Shade this plane a different color.
 Use dashed lines to show where one plane is hidden.

STEP 3 Draw the line of intersection.

Exercises for Example 2

Sketch the figure described.

- **7.** Two lines that lie in a plane and intersect at one point
- **8.** One line that lies in a plane, and two lines that do not lie in the plane

Geometry

Answer Key

Lesson 1.1

Study Guide

- **1.** Sample answer: \overrightarrow{DC} and line n
- **2.** \overline{EC}
- **3.** \overrightarrow{FE}
- **4.** *B*
- **5**. *F*
- **6.** \overrightarrow{DC}

GOAL Use segment postulates to identify congruent segments.

Vocabulary

In Geometry, a rule that is accepted without proof is called a **postulate** or axiom.

Postulate 1 Ruler Postulate: The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the **coordinate** of the point. The **distance** between points A and B, written as AB, is the absolute value of the difference of the coordinates of A and B.

When three points are collinear, you can say that one point is **between** the other two.

Postulate 2 Segment Addition Postulate: If B is between A and C, then AB + BC = AC. If AB + BC = AC, then B is between A and C.

Line segments that have the same length are called **congruent** segments.

EXAMPLE 1 Find a length

Solution

Use the diagram to find BC.

Use the Segment Addition Postulate to write an equation. Then solve the equation to find BC.

$$AC = AB + BC$$
 Segment Addition Postulate

$$32 = 10 + BC$$
 Substitute 32 for AC and 10 for AB.

$$22 = BC$$
 Subtract 10 from each side.

Exercises for Example 1

Use the diagram to find BC.

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

LESSON 1.2

Study Guide continued For use with pages 9–14

Compare segments for congruence EXAMPLE 2

Use the diagram to determine whether \overline{AB} and \overline{CD} are congruent.

Solution

To find the length of a horizontal segment find the absolute value of the difference of the *x*-coordinates of the endpoints.

$$AB = |-1 - 3| = |-4| = 4$$
 Use Ruler Postulate.

To find the length of a vertical segment, find the absolute value of the difference of the y-coordinates of the endpoints.

$$CD = |5 - 1| = 4$$

Use Ruler Postulate.

 \overline{AB} and \overline{CD} have the same length. So, $\overline{AB} \cong \overline{CD}$.

Exercises for Example 2

Use the diagram to determine whether \overline{AB} and \overline{CD} are congruent.

5.

6.

7.

8.

Answer Key

Lesson 1.2

Study Guide

- **1.** 10
- **2.** 12
- **3.** 6
- **4.** 12
- **5.** congruent
- **6.** not congruent
- 7. not congruent
- 8. congruent

Study Guide For use with pages 15–22

GOAL Find lengths of segments in the coordinate plane.

Vocabulary

The **midpoint** of a segment is the point that divides the segment into two congruent segments.

A **segment bisector** is a point, ray, line, line segment, or plane that intersects the segment at its midpoint.

A midpoint or a segment bisector bisects a segment.

The Midpoint Formula: If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint M of \overline{AB} has coordinates $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

The Distance Formula: If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

EXAMPLE 1 Find segment lengths

In the diagram, line ℓ bisects \overline{AC} at point B, and AB = 8 in. Find AC.

Solution

Point *B* is the midpoint of \overline{AC} . So, AB = BC = 8 in.

$$AC = AB + BC$$
 Segment Addition Postulate

$$= 8 + 8$$
 Substitute 8 for AB and 8 for BC.

Exercises for Example 1

Line $\boldsymbol{\ell}$ bisects the segment. Find the indicated length.

1. Find AC if AB = 10 cm.

2. Find DF if EF = 25 mm.

3. Find JM if RM = 37 in.

4. Find WX if WY = 30 cm.

LESSON 1.3

Study Guide continued For use with pages 15–22

EXAMPLE 2 Use the midpoint and distance formulas

- **a.** The endpoints of \overline{AB} are A(3, 2) and B(6, 7). Find the coordinates of the midpoint M.
- **b.** What is the length of \overline{AB} ?

Solution

a. Use the Midpoint Formula.

$$M\left(\frac{3+6}{2}, \frac{2+7}{2}\right) = \left(\frac{9}{2}, \frac{9}{2}\right)$$

The coordinates of the midpoint M are $\left(\frac{9}{2}, \frac{9}{2}\right)$.

$$=\sqrt{9+25}$$

$$=\sqrt{34}$$

Distance Formula

Substitute.

Subtract.

Evaluate powers.

Add.

Use a calculator to approximate the square root.

The length of \overline{AB} is approximately equal to 5.83.

Exercises for Example 2

Find the coordinates of the midpoint of the segment with the given endpoints.

5.
$$A(1, 2)$$
 and $B(3, 6)$

6.
$$J(-1, 3)$$
 and $K(9, 0)$

7.
$$R(4, -2)$$
 and $G(12, 8)$

8.
$$C(-3, -1)$$
 and $D(9, 5)$

Sopyright © by McDougal Littell, a division of Houghton Mifflin Company.

9.
$$S(5, -2)$$
 and $T(-3, 4)$

10.
$$X(7, -4)$$
 and $Y(-2, -1)$

Find the length of the segment. Round to the nearest tenth of a unit.

11.

12.

Answer Key

Lesson 1.3

Study Guide

1. 20 **2.** 50 **3.** 74 **4.** 15 **5.** (2, 4) **6.** $\left(4, \frac{3}{2}\right)$ **7.** (8, 3) **8.** (3, 2) **9.** (1, 1) **10.** $\left(\frac{5}{2}, -\frac{5}{2}\right)$

7. (8, 3) **8.** (3, 2) **9.** (1, 1) **10.**
$$\left(\frac{5}{2}, -\frac{5}{2}\right)$$

11. 7.2 **12.** 6.4