Vectors - Doing basic physics with vectors

Contents:

- •Scalars times vectors
- •Whiteboards

Vectors - Scalar times vector - Basics

The basic concept is simple: Suppose you had a Velocity of v = 2.1 m/s x + 3.2 m/s yfor 2.0 seconds, your displacement would be simply v = s/t, s = vt:

$$(2.1 \text{ m/s x} + 3.2 \text{ m/s y})(2.0 \text{s}) =$$

s = 4.2 m x + 6.4 m y

So you just multiply the scalar by each component (distributed)

Vectors - Example #2

Suppose initial vel (u) is u = 12 m/s x + 17 m/s yand acceleration is a = 0 m/s/s x + -9.8 m/s/s yWhat is your displacement and velocity at 3.0 sec

x un y un	Solve using suvat
s = ? $s = ?$ $u = 12 m/s$ $u = 17 m/s$ $v = ?$ $u = -9.8 m/s/s$ $a = 0$ $a = -9.8 m/s/s$ $t = 3.0 s$ $t = 3.0 s$	v = u + at $s = ut + \frac{1}{2}at^{2}$

Whiteboards:Scalar times vector1 | 2 | 3 | 4

What is your velocity if your displacement is 4.6 m x + -6.8 m y in 3.17 seconds?

v = s/tv = (4.6 m x + -6.8 m y)/(3.17 s) v = (1.5 ms⁻¹ x + -2.1 ms⁻¹ y)

What is your change in velocity if your acceleration is $-1.50 \text{ ms}^{-2} \text{ x} + -9.80 \text{ ms}^{-2} \text{ y}$ for 2.50 seconds?

a =
$$\Delta v/t$$
, $\Delta v = at$
 $\Delta v = (-1.5 \text{ ms}^{-2} \text{ x} + -9.8 \text{ ms}^{-2} \text{ y})(2.5 \text{ s})$
 $\Delta v = (-3.75 \text{ ms}^{-1} \text{ x} + -24.5 \text{ ms}^{-1} \text{ y})$

What is your final velocity if your initial velocity is $15.2 \text{ ms}^{-1} \text{ x} + 35.2 \text{ ms}^{-1} \text{ y}$, and you accelerate at $5.50 \text{ ms}^{-2} \text{ x} + -3.80 \text{ ms}^{-2} \text{ y}$ for 1.75 seconds?

$$v = u + at$$

$$v = (15.2 \text{ ms}^{-1} \text{ x} + 35.2 \text{ ms}^{-1} \text{ y}) + (5.50 \text{ ms}^{-2} \text{ x} + -3.80 \text{ ms}^{-2} \text{ y})(1.75 \text{ s})$$

$$v = (15.2 \text{ ms}^{-1} \text{ x} + 35.2 \text{ ms}^{-1} \text{ y}) + (9.625 \text{ ms}^{-1} \text{ x} + -6.65 \text{ ms}^{-1} \text{ y})$$

$$v = (24.8 \text{ ms}^{-1} \text{ x} + 28.6 \text{ ms}^{-1} \text{ y})$$

What is your displacement if your initial velocity is $5.2 \text{ ms}^{-1} \text{ x} + 3.2 \text{ ms}^{-1} \text{ y}$, and your final velocity is $2.3 \text{ ms}^{-1} \text{ x} + 4.8 \text{ ms}^{-1} \text{ y}$ after 12 seconds?

$$s = (u+v)t/2$$

$$s = \{(5.2 \text{ ms}^{-1} \text{ x} + 3.2 \text{ ms}^{-1} \text{ y}) + (2.3 \text{ ms}^{-1} \text{ x} + 4.8 \text{ ms}^{-1} \text{ y})\}(12 \text{ s})/2$$

$$s = \{7.5 \text{ ms}^{-1} \text{ x} + 8.0 \text{ ms}^{-1} \text{ y}\}(12 \text{ s})/2$$

$$s = \{90 \text{ m } \text{ x} + 96 \text{ m } \text{ y}\}/2$$

$$s = 45 \text{ m } \text{ x} + 48 \text{ m } \text{ y}$$