Chapter 9: Properties of Circles

Topic/Assignment		Turned in?
Ch 9 Vocabulary Puzzle		Yes No
Vocabulary and Properties of Tangents HW: Worksheet	I can use properties of a tangent to a circle to solve for missing values.	Yes No
Arc Measurements/ Properties of Chords HW: Worksheet	I can use angle measures to find arc measures. I can find the length of a chord and measure of an arc using relationships.	Yes No
Inscribed Angles and Polygons HW: Worksheet	I can find measures of angles and length of arcs for inscribed angles on circles.	Yes No
Ch 9 Quiz		
Angles in Circles HW: Worksheet	I can find the measures of angles inside or outside a circle.	Yes No
Segment Lengths in Circles HW: Worksheet	I can find the segment lengths in circles.	Yes No
Equations of Circles HW: Worksheet	I can write equations of circles in the coordinate plane.	Yes No
Ch 9 Review		Yes No

The Ch 9 Test is on _____.

**If all assignments are completed by the day the Unit 10 test is given you will receive 5 extra points on the test. **

Circle Vocabulary and Concepts

Objective: Identify segments and lines related to circles. Use properties of a tangent to a circle

Term	Notes	Drawing
Circle: the set of all points in a plane that are equidistant from a given point called the <u>center</u> of the circle		
Radius: a segment whose endpoints are the center and any point on the circle. All radii of a circle are congruent.		
Chord: a segment whose endpoints are on a circle		
Diameter: a chord that contains the center of the circle		
Secant: a line that intersects a circle in two points		
Tangent: a line in the plane of a circle that intersects the circle in exactly one point (the <i>point of tangency</i>)		
Point of Tangency: the point where a tangent line intersects the circle		

EXAMPLE 1: Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius be specific!

a. *AD* b. *GE* c. *AE* d. *CA* e. *KG* g. *HB*

_____ Date: ______ Block: _____

Term	Notes	Drawing	
RULE: In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle			
RULE: Tangent segments from a common external point are congruent.			

EXAMPLE 2: Verifying a Tangent to a Circle. (Use the Pythagorean Theorem Converse!)

EXAMPLE 3: Using Properties of Tangents. Given: \overline{SR} and \overline{ST} are tangent to Circle C. Find the value of x.

b.

a.

С. x + 4x + 9

_____ Date: ______ Block: _____

Arc Measurement/ Properties of Chords

Objective: Use properties of arcs of circles Use properties of chords of circles

Term	Notes	Drawing
Central Angle: an angle whose vertex is the center of a circle		
Minor Arc: part of a circle that measures less than 180°		
Major Arc: part of a circle that measures between 180° and 360°		
Semicircle: an arc with endpoints that are the endpoints of a diameter of a circle. The measure of a semicircle is 180°		
Measure of a Minor arc: the measure of the arc's central angle		
Measure of a Major arc: the difference between 360° and the measure of the related minor arc		

EXAMPLE 1: Finding measures of each arc of circle R. (NP is a diameter)

a. MN

b. MPN

c. PMN

d. *PM*

Arc Addition Postulate
The measure of an arc formed by two
adjacent arcs is the sum of the
measures of the two arcs.

Name: _____ Date: _____ Block: _____

EXAMPLE 2: Finding the measures of Arcs

а. *GE*

b. *GEF*

с. *GF*

d. *FHE*

Congruent Circles: Two circles that have the same radius.	
Congruent Arcs: Two arcs that have the same measure. They are part of the same circle or congruent circles	

EXAMPLE 3: Tell whether the highlighted arcs are congruent. Explain why or why not.

Name:	Date:	Block:
RULE: In the same circle, or in congruent circles, two minor arcs are congruent IF AND ONLY IF their corresponding chords are congruent.		
RULE: If one chord is a perpendicular bisector of another chord, then the first chord is a diameter.		
RULE: If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.		

EXAMPLE 4:

a. Find mAD

b. Find mAD

Use the diagram of $\odot D$.

- 1. If $\widehat{mAB} = 110^\circ$, find \widehat{mBC} .
- **2.** If $\widehat{mAC} = 150^\circ$, find \widehat{mAB} .

In the diagram of $\odot C$, QR = ST = 16. Find *CU*.

Find the measure of the indicated arc in the diagram.

3. CD

4. DE

5. CE

Inscribed Angles and Polygons

Name:	Date:	Block:
RULE: If two inscribed angles of a circle intercept the same arc, then the angles are congruent.		
EXAMPLE 2: $m \angle E = 75^\circ$. What is $m \angle F$?	b) $(2x + 11)^{\circ}$ $(4x - 3)^{\circ}$	

Inscribed Polygons.	
Right Triangle RULE: If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.	B
Quadrilateral RULE: A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.	D C G G

EXAMPLE 3: Find the value of each variable.

_Date: __

Other Angle Relationships in Circles

B)

F)

H)

	Segments in Circles	
Chord Segments The two segments of each chord that are formed when two chords intersect in the interior of a circle.		C B D A
Segments of Chords If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.		C B D A
Secant/External Secant Segments A secant segment is a segment that contains a chord of a circle, and has exactly one endpoint outside the circle. The part of a secant segment that is outside the circle is called an <i>external</i> segment.		
Segments of Secants If two secant segments share the same endpoint outside a circle, then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment.		E C D
Segments of Secants and Tangents If a secant segment and a tangent segment share an endpoint outside a circle, then the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment.		E C D

EXAMPLES: Solve for x a)

f)

h)

i)

_____ Date: ______ Block: _____

Equation of the Circle

Objective: Write the equation of a circle. Use the equation of a circle and its graph to solve problems.

Equation of a Circle			

EXAMPLE 1: Write an equation of a circle with the given radius and center.

a. r = 5(12, 80)b. r = 9(6, 12)

c. r = 12 (-1 , 15) d. r = 4(8, -7)

EXAMPLE 2: Identify the center and radius of the following

a. $(x-6)^2 + (y-24)^2 = 25$ b. $(x-9)^2 + (y-42)^2 = 49$

c.
$$(x+8)^2 + (y-17)^2 = 1$$

d. $(x-10)^2 + (y+9)^2 = 64$

EXAMPLE 3: Graphing an Equation of a Circle a. $(x+3)^2 + (y-2)^2 = 4$

b. $(x-3)^2 + (y-1)^2 = 16$

