Section C: Practice Problems

1. Select **all** correct statements.

- A. $\frac{1}{2}$ is equivalent to $\frac{3}{6}$
- B. $\frac{1}{2}$ is equivalent to $\frac{1}{3}$
- C. $\frac{2}{2}$ is equivalent to $\frac{4}{4}$
- D. $\frac{2}{2}$ is equivalent to $\frac{6}{6}$
- E. $\frac{2}{3}$ is equivalent to $\frac{4}{6}$
- F. $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
- (From Unit 5, Lesson 10.)
- 2. Write as many fractions as you can that represent the shaded part of each diagram.

(From Unit 5, Lesson 11.)

3. a. Tyler draws this picture and says that $\frac{3}{4}$ is equivalent to $\frac{2}{3}$. Explain why Tyler is not correct.

b. Find a fraction equivalent to $\frac{2}{3}$.

c. Find a fraction equivalent to $\frac{3}{4}$.

(From Unit 5, Lesson 12.)

4. a. Write 10 as a fraction in 2 different ways.

b. Is $\frac{88}{8}$ equivalent to a whole number?

(From Unit 5, Lesson 13.)

Fractions as Numbers

5. Exploration

Decide if each fraction is a whole number. Explain or show your reasoning.

6. Exploration

If you continue to fold fraction strips, how many parts can you fold them into? Can you fold them into 100 equal parts?