	Name:	
	Date:	Period:
Quadratic Formula Word Problems		
Jason jumped off of a cliff into the ocean in Acap leight as a function of time could be modeled by the time in seconds and h is the height in feet.	e function $h(t) = -16t^2 + 16t$ he, height	+480, where t is the
a. How long did it take for Jason to reach his (time) It took to the Max	s maximum height? X = cond to get height.	$\frac{-(16)}{2(-16)} = \frac{-16}{-32} = \frac{1}{2}$
b. What was the highest point that Jason red The maximum height is 484 ft.	ached?	$-16(\pm)^{2}+16(\pm)+$ = 484
c. Jason hit the water after how many second	nds? (x-intercept) [Los econd
$X = -\frac{(16) \pm \sqrt{(16)^2 - 4(-16)(480)}}{2(-16)} =$	-16± \30,976 =	-16 ± 176
2(-16)	-32	10+116=-X -16-1
second, then its height h after t seconds is given by neglected). (Time, height) a. How long will it take for the rocket to return $-16t^2+128t=0$ $-16t(t-8)=0$		1 +
	£=0 L-0	nd? to the
b. After how many seconds will the rocket to $-16t^2+128t=112$ $-16t^2+128t=112=0$ $-16(t^2-8+7)=0$	+=1 t=1	= 0
c. How long will it take the rocket to hit its r	maximum height?	
. /	(Vertex) 4 Deconds to get the Max.	to height.
d What is the maximum height?		
$4 = -16(4)^{2} + 128(4)$	Max height is	

756 +to

 $4 = -16(4)^{2} + 128(4)$

- 3. A rocket is launched from atop a 101 foot cliff with an initial velocity of 116 ft/s.
 - a. Substitute the values into the vertical motion formula $h(t) = -16t^2 + vt + h_0$. Let h(t) = 0
 - b. Use the quadratic formula to find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second.

4. You and a friend are hiking in the mountains. You want to climb to a ledge that is 20 ft. above you. The height of the grappling hook you throw is given by the function $h(t) = -16t^2 - 32t + 5$. What is the maximum height of the grappling hook? Can you throw it high enough to reach the ledge?

$$X = \frac{-(-32)}{2(-16)} = \frac{+32}{-32} = 1$$

$$y = -16(+1)^2 - 32(-1) + 5$$

5. You are trying to dunk a basketball. You need to jump 2.5 ft. in the air to dunk the ball. The heigh that your feet are above the ground is given by the function $h(t) = -16t^2 + 12t$. What is the maximum height your feet will be above the ground? Will you be able to dunk the basketball?

$$X = \frac{-(12)}{2(-16)} = \frac{-12}{-32} = 0.375$$

4 = -16(0.375)2+12(0.375)

Ite needs a Vertical jump of 2.5, therefore he will not dunk with a vertical of 2.25.

6. A diver is standing on a platform 24 ft. above the pool. He jumps form the platform with an initi8al upward velocity of 8 ft/s. Use the formula $h(t) = -16t^2 + vt + s$, where h is his height above the water, t is the time, v is his starting upward velocity, and s is his starting height. How long will it take for him to hit the water? (x-intercept)

$$h(t) = -16t^2 + 8t + 24$$

 $-8(2t^2 - t - 3) = 0$
Bottom's Up

* I + will take him 1.5 sec. to hit the water.

A ball is thrown upward from a height of 15 ft. with an initial upward velocity of 5 ft/s. Use the formula $h(t) = -16t^2 + vt + s$ to find how long it will take for the ball to hit the ground. (χ -intercept)

$$A(\pm) = -16\pm^{2} + 5\pm + 15$$

$$Q = -16$$

$$X = -(5) \pm \sqrt{(5)^{2} - 4(-16)(15)}$$

$$D = 5$$

$$C = 15$$

$$= -5 \pm \sqrt{985}$$

$$x = 1.14 \text{ Acc}$$

$$= -32 + 44 \text{ with a hall by bitting a layer that}$$

8. One of the games at a carnival involves trying to ring a bell with a ball by hitting a lever that propels the ball into the air. The height of the ball is modeled by the equation $h(t) = -16t^2 + 39t$. If the bell is 25 ft. above the ground, will it be hit by the ball?

$$h(t) = -16t^2 + 39t$$
 Vertex = (1.2, 23.75)
 $\chi = \frac{-(39)}{2(-16)} = \frac{-39}{-32} = 1.2$... No, the bell will not hit the bell.
 $y = -16(12)^2 + 39(162) = 23.75$

- 9. A ship drops anchor in a harbor. The anchor is 49 ft. above the surface of the water when it is released. Use the vertical motion formula $h = -16t^2 + vt + s$ to answer the following questions.
 - a. What is the value of x, the starting height?
 - b. What is the value of h when the anchor hits the water?
 - c. The starting velocity is zero. After how many seconds will the anchor hit the water?

10. An amateur rocketry club is holding a competition. There is cloud cover at 1000 ft. If a rocket is launched with a velocity of 315 ft/s, use the function $h(t) = -16t + vt + h_0$ to determine how long the rocket is out of sight.