Velocity and Acceleration

GPS

- b S8P3. Students will investigate relationship between force, mass, and the motion of objects.
- b a. Determine the relationship between velocity and acceleration.

- b A force is a push or a pull
- b When a force acts on an object, one possible result is motion.

- b A reference point is generally a stationary object such as a tree, a street sign, or a line on the road.
- b Once a reference point has been established, it is possible to define the motion of an object in terms of speed, position, and direction.

- b The speed of an object refers to how fast an object moves.
 - To determine speed you need to know both the distance an object moves and the amount of time needed to travel.

- b Calculations using formulas
- b Most objects do not move at a constant, unchanging speed.
- b When you use the formula to find the speed of an object you're actually finding the object's average speed.

speed =
$$\frac{\text{distance}}{\text{time}}$$
 or
 $s = \frac{d}{t}$

b The diagram shows how two automobiles with different speeds move during the same amount of time.

- b Speed can be shown on a graph of distance vs. time.
- b Notice that the line of this graph is not straight. This is because the object's speed changes.

Velocity

- b Velocity is the speed of an object in a particular direction.
- b Suppose that two cars traveled at 50 kilometers per hour on the same highway for 2 hours. After two hours, the cars are 200 kilometers away from each other. How is this possible?
- **b** Answer: They were traveling in opposite directions.

Velocity

- b Speed describes distance and time, but does not indicate direction.
- b When the direction of an object's movement is included, you are describing an object's velocity.

Velocity

- b Velocity changes when the speed or the direction of an object changes.
 - If a sailboat's speed goes from 4 knots to 7 knots, its velocity has changed. If the sailboat continues moving at 7 knots, but changes direction, its velocity has again changed.

- b Acceleration is the rate at which an object's velocity changes.
 - Velocity changes when an object's speed and direction changes.
 - Acceleration of an object also changes if its speed or its direction changes.

b You can calculate the average acceleration of an object by using the following equation.

b Acceleration is recorded in units such as meters per second squared (m/s²).

Acceleration of a car

Time (seconds)	Velocity (meters per second east)
0	0
1.	5
2	10
3	15
4	20

b Based on this data, you can see that the acceleration of the car at any time is 5m/s/s or 5 m/s². Every second, the velocity of the car increases by 5 m/s.

b Assume that the following graph plots your acceleration (velocity vs. time) during a car trip.
The graph shows that at 10 seconds, the velocity of the car was 35 kilometers per hour east.

b These equations can be used to calculate the average acceleration of the car.

acceleration =
$$\frac{35 \text{ km/h east} - 0 \text{ km/h east}}{10\text{s}}$$
$$= \frac{35 \text{ km/h}}{10\text{s}} = 3.5 \text{ km/h/s east}$$