Appendix C

Meteoroids and Orbital Debris Velocity and Acceleration Practice Problems

DIRECTIONS: Solve the following situation problems using equations for velocity and acceleration.

- 1. What is the speed of a rocket that travels 9000 meters in 12.12 seconds?
- 2. What is the speed of a jet plane that travels 528 meters in 4 seconds?
- 3. After an impact involving a non-functioning satellite, a paint chip leaves the surface
 - of the satellite at a speed of 96 m/s. After 17 seconds, how far has the chip landed?
- 4. The space shuttle Endeavor is launched to altitude of 500 km above the surface of the earth. The shuttle travels at an average rate of 700 m/s. How long will it take for
 - Endeavor to reach its orbit?
- 5. How long will your trip take (in hours) if you travel 350 km at an average speed of
 - 80 km/hr?
- 6. How many seconds will it take for a satellite to travel 450 km at a rate of 120 m/s?
- 7. What is the speed of a walking person in m/s if the person travels 1000 m in 20 minutes?
- 8. How far (in meters) will you travel in 3 minutes running at a rate of 6 m/s?
- 9. A trip to cape Canaveral, Florida takes 10 hours. The distance is 816 km. Calculate the average speed.
- 10. In 0.5 seconds, a projectile goes from 0 to 300 m/s. What is the acceleration of the projectile?
- 11. A meteoroid changed velocity from 1.0 km/s to 1.8 km/s in 0.03 seconds. What is the acceleration of the meteoroid?
- 12. The space shuttle releases a space telescope into orbit around the earth. The telescope goes from being stationary to traveling at a speed of 1700 m/s in 25 seconds. What is the acceleration of the satellite?
- 13. A dragster in a race accelerated from stop to 60 m/s by the time it reached the finish line. The dragster moved in a straight line and traveled from the starting line to
 - the finish line in 8.0 sec. What was the acceleration of the dragster?

Meteoroids and Orbital Debris Velocity and Acceleration Answer Sheet

```
1. d=vt (distance = velocity multiplied by time)
   d=9000 m
    t=12.12 sec.
    solving for v, v=d/t,
   v=742.57 m/sec.
2. d=vt
   d=528 m
    t=4 sec
    solving for v, v=d/t,
   v=132 m/sec.
3. d=vt
    v=96 \text{ m/sec}.
    t=17 \text{ sec.}
    d=1632 m
 4. d=vt
    d=500,000 m
    v=700 \text{ m/sec.}
    solving for t, t=d/v,
    t=714.3 sec.(11.9 min.)
```

```
5. d=vt
   d=350,000 \text{ m}
   v=80,000 m/hr.
   solving for t, t=d/v
   t=4.375 hrs.
6. d=vt
   d=450,000 m
   v=120 \text{ m/sec}
   solving for t, t=d/v,
   t=3750 sec.
7. d=vt
   d=1000m
   t=20 min.(60 sec.) =1200 sec.
              min
   solving for v, v=d/t,
  v=0.83 m/sec.
8. d=vt
   v=6 \text{ m/sec}
   t=3 min.(60 sec.)=180 sec.
            min
```

d=1080 m

9. d=vt

d=816,000 m
t=10 hrs.
$$\frac{(60 \text{ min.})(60 \text{ sec.})}{\text{hrs}}$$
 = 36,000 sec.
solving for v, v=d/t,

v=22.67 m/sec. or

```
d=816,000 m
t=10 hrs.
solving for v, v=d/t,
```

```
v=81.6 km/hr.
```

 $a=7.5 \text{ m/sec.}^2$

```
10. a=v/t (acceleration = velocity divided by time)

t=0.5 sec.
v=300 m/sec.

a=600 m/sec.²

11. a=v/t

t=0.03 sec.
v=0.8 km/sec.

a=26.7 km/sec.²

12. a=v/t

t=25 sec.
v=1700 m/sec.

a=68 m/sec.²

13. a=v/t

t=8 sec.
v=60 m/sec.
```