Unit 2, Test 2 Exponents & Scientific Notation

Do not write on this test...use the answer sheet! Do all your scratch work on paper and mark all your answers on the answer sheet.

MCC8.EE.1 Know and apply properties of integer exponents to generate equivalent numerical expressions.

1.	(3x ³) ²				
	a. 3x ⁶	b. 9x⁵	c. 6x ⁶	d. 9x ⁶	
2.	Which expression is NOT equal to 1?				
	a. (5) ⁰	b. (1) ⁻²	c. (-1) ³	d. (9 ³) ÷ (9 ³)	
3.	$y \cdot y^3 \cdot y^2$				
	a. y ⁵	b. y ⁰	c. y ⁶	d. y ⁷	
4.	(2x ⁵ y ³)(3x ³ y)				
	а. бх ⁸ у ⁴	b. 5x ⁸ y ³	c. 6x ¹⁵ y ³	d. 6x ⁸ y ³	
	$m^6 n^{-2} p^4$				
5.	m ² n ⁴ p				
		$\frac{m^4p^3}{c}$	$\frac{\mathrm{m}^4\mathrm{n}^6}{3}$		
	a. m ⁴ n ⁶ p ³¹	b. n°	c. p	d. 0	
	$25a^2b^3$				
6.	5a				
	a	5ab ³	b^3		
	a. b	<mark>ь.</mark> б	_{c.} 5a	d. 5ab ³	
7.	4 ² · (cb ³) ⁰				
	a16	b. 16	c. 16cb ³	d16cb ³	
8.	(6 ²) · (2 ⁴) · (6 ⁻²)				
		1			
	a. 12	b. 12	c. 24	d. 16	
9.	$3x^4 \cdot 4x^{-2} \cdot x^3$				
			$7x^7$	12	
	a. 12x ⁵	b. 12x ²	c. x^2	d. x^5	

MCC8.EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.

10.	Which of the following	is not in scientific notation?		
	a. 1.1987 x 10 ³	b. 4.56 x 10 ¹⁸	c. 8.642 x 10 ⁻³	d. 61.2 x 10 ⁴

- 11. Susan was given the following number to convert to scientific notation: 12,050,000 Her answer was 1.25×10^7 , but it was marked wrong on her paper. Why?
 - a. She used a positive exponent when she should have used a negative exponent.
 - b. She left out a zero in between the two and the five.
 - c. She was not supposed to have a number in front of the decimal point.
 - d. She should have used a four as her exponent because there are four zeros on the end of the number.

Rewrite these numbers in standard form.					
12.	6.15 x 10 ²	a. 615	b0615	c. 61,500	d. 600
13.	7.1532 x 10⁻⁵	a. 0.0000071532	b. 0.000071532	c. 71,532	d. 715,320
14.	3.456 x 10 ⁰	a. 34.56	b. 0.3456	c. 3.456	d. 3.400
Rewrite these numbers in scientific notation					
15.	0.0372 x 10 ⁻⁷	a. 3.72 x 10 ⁻⁷	b. 3.72 x 10 ⁻⁵	c. 3.72 x 10 ⁻⁹	d. 3.72 x 10 ⁻⁸
16.	0.0032	a. 3.2 x 10 ⁻³	b. 0.32 x 10 ³	c. 3.2 x 10 ³	d. 3.2 x 10 ⁻⁴
17.	54.8 x 10 ³	a. 54.8 x 10 ⁴	b. 5.48 x 10 ⁻³	c. 54,800	d. 5.48×10^4
18.	546.43	a. 5.4643 x 10 ⁻²	b. 5.4643 x 10 ⁻²	c. 5.4643 x 10 ²	d. 5.46 x 10 ²

MCC8.EE.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.

Evaluate the expression. Write the result in scientific notation.

19.	$1.2 \times 10^{-4} \cdot 3 \times 10^{6}$	a. 1.5 x 10 ³	b. 3.6 x 10 ²	c. 36 x 10 ²	d. 3.6 x 10 ¹⁰
20.	<u>4 x 10⁻²</u>	a. 2 x 10 ⁻⁵	b. 2 x 10 ⁵	c. 2 x 10 ¹	d. 2 x 10 ⁻¹
	2 x 10 ⁻³				

21. A rectangular section of land made up of wheat farms has a length of 5×10^4 and a width of 6×10^3 meters. What is the area of the land in square meters?

a. 3 x 10⁶ square meters b. 3 x 10⁷ square meters c. 3 x 10⁸ square meters d. 3 x 10¹² square meters

22. A microscope is set so it makes an object appear 4×10^2 times larger than its actual size. A virus has a diameter of 2×10^{-7} meter. How large will the diameter of the virus appear when it is viewed under the microscope?

a. 8 x 10⁻¹⁴ meter b. 8 x 10⁻⁵ meter c. 8 x 10⁻⁴ meter d. 8 x 10⁵ meters

23. Find the quotient.

$$\frac{2.89 \times 10^2}{3.4 \times 10^{-2}} =$$

a. 0.85×10^{0} b. 0.85×10^{4} c. 8.5×10^{3} d. 8.5×10^{5}