
AP Computer Science
Mrs. Chapman

The BYOB Window / IDE
Tabs
(Block Categories)

Commands
Available to use

Script Area where you type your code

Sprite

Stage

All sprites in
this project

 The Stage is where the
action happens

 You will add objects
called sprites to the
stage and they will act
based on their scripts

 Notice the coordinates
in the lower-right

The Stage / Editor Area

Class / Sprites
 A class is a template in programming used to create
an object.

A class in SNAP is a Sprite. You choose the sprite
class and create an object from it. These are the
main elements of your BYOB programs

 Each object created has one or more commands
(methods) that determine how the object acts
under different circumstances.

 Objects can have different costumes that change
their appearance or attribute.

 BYOB provides a bunch of built-in sprites and
costumes, or you can design your own.

 A method is a group of code that performs
a certain action.

 Methods control an objects actions.

 You can also write methods to change the stage
area.

 All methods in SNAP must have a trigger
or event handler and some operations

 When the event handler happens, the
object will perform the commands in order.
- Sequential order one after the other.

 What does this method do?

Creating a Method

trigger

operations

 The different types of blocks are listed in the
upper left of the BYOB window
 “Motion” blocks cause objects to move

 “Looks” blocks change an object’s appearance

 Etc.

 Each block corresponds to one “action”

 Notice the shapes!

 When a script runs, the actions occur in the
order in which the blocks appear in the script.

Blocks

 Exercise: Write an algorithm to do the following:
 Move the sprite 25 steps,

 Have the sprite say your name for 3 seconds

 Turn the sprite around and move it back where it came
from

 Have the sprite say “I love BYOB!” for 5 seconds

Using blocks to create methods

 Blocks in the Pen category allow your sprites to draw
things on the stage

 The block puts a sprite’s pen down on the stage.
The block picks the pen up.
 When a sprite’s pen is down, moving will cause it to draw.

 You can also change the pen’s color, size, or shade.

Drawing

 Exercise 1: Write an algorithm to make your
sprite draw a square with 50 step sides.

 Exercise 2: Once you’ve done that, write an
algorithm to draw two squares next to each
other
 The squares should not be connected by a line

Drawing

Triggers/Controls

 Triggers tell an object to start executing
 There are four types of triggers:
 When green flag is clicked
 When I am clicked
 When <some key> is pressed
 When I receive a message
▪ more on messages later

Triggers/Controls

 Exercise: Rewrite your square drawing
algorithm to draw a square whenever the
space bar is pressed. Clear the screen before
each new square.

 You can build multiple scripts in the script
area for any sprite (or the stage)
 All these scripts run at the same time

(assuming their triggers occur)
 Each script is called a “thread”

Threads

Threads

 Exercise: Write scripts to allow the user to
move a sprite around the stage with the arrow
keys.

 If you right-click on the script area,
 you get an option to “add comment”

 Comments are used to describe what’s going
on in the code. In BYOB, they look like this:
 They do not execute.

Comments

Comments

 BYOB comments can be attached to blocks
to indicate to what they are referring:

 You should use comments to:
 Describe the basic, high-level behavior of any script
 Explain anything potentially unclear or tricky
 Explain why you chose to do something a certain way

if there were multiple options
 Etc.

 Get in the habit of using comments now. You’ll
be graded on them (especially in Java)!

Comments

 The order in which blocks are executed
is called the “control flow” of the script
 So far all our scripts have just executed

blocks in the order given
 Consider our script to draw a square
 Notice all the repeated code
 Wouldn’t it be nice if there were a way to

simplify this?

Control Flow

 Loops cause the object to repeat a certain set of
commands multiple times without having to
repeat the blocks

 Loop blocks in SNAP have the symbol at
their bottom right
 This indicates that when the end of the loop is hit, the

next block executed is back at the beginning
 There are several types of loops in SNAP:

Loops

 Exercise 1: Rewrite the script to draw a square
using loops. Try not to repeat any code.

 Exercise 2: Now rewrite the script to draw two
squares next to each other using loops. Again,
try not to repeat code.
 This is tricky!

Loops

 Thought exercise: How can we make objects
move at different “speeds”?

 Variables allow us to store data and modify or
retrieve it later

 Check out the Variables category
 Look around for built-in variables
 What shape are variable blocks?

Variables

 When we click “Make a variable” we get
a dialog box

 The name can be anything you want

Variables

 “For all sprites” means all sprites/objects will be able
to see and edit the variable. This is a global variable.
◦ Why might this be useful? Why might it be dangerous?

 “For this sprite only” means only the current sprite can
see and edit it. This is a local variable.

 You can ask the user for input using

 The response is stored in
 Note that is just a built-in variable

 Often, you’ll be storing the input in a variable
for later use

Input

 Exercise 1: Write an algorithm to do the following:
 Ask the user for a number between 1 and 10
 Draw that many squares

 Exercise 2: Write an algorithm to do the following:
 Ask the user for a number between 1 and 10
 Ask the user for a number between 1 and 255
 Draw the first number of squares with the pen color set to

the second number

Input

 So far, we’ve only used simple numbers
 It would probably be nice if we could do some

math
 Check out the Operators category
 The first four blocks are your basic arithmetic

operators
 At the bottom are some more useful operations
 As always, notice the shapes– where can we use these

blocks?

Doing Arithmetic

 Exercise: Write an algorithm to do the
following:
 Ask the user for a number between 1 and 5
 Draw twice that many squares

Doing Arithmetic

 See the hexagon-shaped hole in ?
What goes there?
 Look around for blocks with that shape. What does it look like they

do?

Booleans

 Hexagon-shaped blocks represent Boolean
expressions
◦ Named after 19th century English mathematician

George Boole
 Boolean expressions evaluate to either true

or false

 Boolean expressions are used in conditions

 Conditions control whether or not certain blocks are executed
 The blocks inside of an “if” are executed if and only if the condition is

true
 The blocks inside of an “else” are executed if and only if the condition

is false
 Look at the “Sensing” category for lots of interesting things you

can test

Conditions

 You can also use conditions in loops
 is like forever, but the body only

executes when the condition is true
▪ Will stop then start again if things change

 loops until the condition is true, then
moves on

 Play with these, as they can be quite useful

Conditional Loops

 Boolean expressions can be combined in certain ways

 An and expression is true when both parts are true
 An or expression is true is when at least one part is

true
 A not expression is true when the component

expression is false

Boolean Operators

 Truth Tables:

Boolean Operators

AND T F

T T F

F F F

OR T F

T T T

F T F

NOT

T F

F T

 Exercise 1: Write an algorithm to do the following:
 Generate a random number between 1 and 10
 Draw a red square if the number is less than 6
 Draw a blue square if the number is 6 or greater

 Exercise 2: Write an algorithm to do the following:
 Generate two random numbers between 1 and 10
 If both are less than 6, draw a red square
 If both are 6 or greater, draw a blue square
 Otherwise, draw a purple square

Conditions/Booleans

 Sprites can cause each other to act in certain
ways by using and

 This sends out a message which can be picked
up by other objects

 These messages are called events
 Events have unique names, and any sprite can

broadcast or listen for any event

Events

 Exercise: Implement “Marco Polo”
 Create one object at the center of the stage
 Create another object at a random location and hide it
 The arrow keys control the motion of the first object
 When space is pressed, the first object should say “Marco”

after which the second sprite should briefly show itself and
say “Polo”

 If the first sprite says “Marco” when it is touching the
second, the second sprite should appear and say “Found
me!”

Events

