
AP Computer Science
Mrs. Chapman

The BYOB Window / IDE
Tabs
(Block Categories)

Commands
Available to use

Script Area where you type your code

Sprite

Stage

All sprites in
this project

 The Stage is where the
action happens

 You will add objects
called sprites to the
stage and they will act
based on their scripts

 Notice the coordinates
in the lower-right

The Stage / Editor Area

Class / Sprites
 A class is a template in programming used to create
an object.

A class in SNAP is a Sprite. You choose the sprite
class and create an object from it. These are the
main elements of your BYOB programs

 Each object created has one or more commands
(methods) that determine how the object acts
under different circumstances.

 Objects can have different costumes that change
their appearance or attribute.

 BYOB provides a bunch of built-in sprites and
costumes, or you can design your own.

 A method is a group of code that performs
a certain action.

 Methods control an objects actions.

 You can also write methods to change the stage
area.

 All methods in SNAP must have a trigger
or event handler and some operations

 When the event handler happens, the
object will perform the commands in order.
- Sequential order one after the other.

 What does this method do?

Creating a Method

trigger

operations

 The different types of blocks are listed in the
upper left of the BYOB window
 “Motion” blocks cause objects to move

 “Looks” blocks change an object’s appearance

 Etc.

 Each block corresponds to one “action”

 Notice the shapes!

 When a script runs, the actions occur in the
order in which the blocks appear in the script.

Blocks

 Exercise: Write an algorithm to do the following:
 Move the sprite 25 steps,

 Have the sprite say your name for 3 seconds

 Turn the sprite around and move it back where it came
from

 Have the sprite say “I love BYOB!” for 5 seconds

Using blocks to create methods

 Blocks in the Pen category allow your sprites to draw
things on the stage

 The block puts a sprite’s pen down on the stage.
The block picks the pen up.
 When a sprite’s pen is down, moving will cause it to draw.

 You can also change the pen’s color, size, or shade.

Drawing

 Exercise 1: Write an algorithm to make your
sprite draw a square with 50 step sides.

 Exercise 2: Once you’ve done that, write an
algorithm to draw two squares next to each
other
 The squares should not be connected by a line

Drawing

Triggers/Controls

 Triggers tell an object to start executing
 There are four types of triggers:
 When green flag is clicked
 When I am clicked
 When <some key> is pressed
 When I receive a message
▪ more on messages later

Triggers/Controls

 Exercise: Rewrite your square drawing
algorithm to draw a square whenever the
space bar is pressed. Clear the screen before
each new square.

 You can build multiple scripts in the script
area for any sprite (or the stage)
 All these scripts run at the same time

(assuming their triggers occur)
 Each script is called a “thread”

Threads

Threads

 Exercise: Write scripts to allow the user to
move a sprite around the stage with the arrow
keys.

 If you right-click on the script area,
 you get an option to “add comment”

 Comments are used to describe what’s going
on in the code. In BYOB, they look like this:
 They do not execute.

Comments

Comments

 BYOB comments can be attached to blocks
to indicate to what they are referring:

 You should use comments to:
 Describe the basic, high-level behavior of any script
 Explain anything potentially unclear or tricky
 Explain why you chose to do something a certain way

if there were multiple options
 Etc.

 Get in the habit of using comments now. You’ll
be graded on them (especially in Java)!

Comments

 The order in which blocks are executed
is called the “control flow” of the script
 So far all our scripts have just executed

blocks in the order given
 Consider our script to draw a square
 Notice all the repeated code
 Wouldn’t it be nice if there were a way to

simplify this?

Control Flow

 Loops cause the object to repeat a certain set of
commands multiple times without having to
repeat the blocks

 Loop blocks in SNAP have the symbol at
their bottom right
 This indicates that when the end of the loop is hit, the

next block executed is back at the beginning
 There are several types of loops in SNAP:

Loops

 Exercise 1: Rewrite the script to draw a square
using loops. Try not to repeat any code.

 Exercise 2: Now rewrite the script to draw two
squares next to each other using loops. Again,
try not to repeat code.
 This is tricky!

Loops

 Thought exercise: How can we make objects
move at different “speeds”?

 Variables allow us to store data and modify or
retrieve it later

 Check out the Variables category
 Look around for built-in variables
 What shape are variable blocks?

Variables

 When we click “Make a variable” we get
a dialog box

 The name can be anything you want

Variables

 “For all sprites” means all sprites/objects will be able
to see and edit the variable. This is a global variable.
◦ Why might this be useful? Why might it be dangerous?

 “For this sprite only” means only the current sprite can
see and edit it. This is a local variable.

 You can ask the user for input using

 The response is stored in
 Note that is just a built-in variable

 Often, you’ll be storing the input in a variable
for later use

Input

 Exercise 1: Write an algorithm to do the following:
 Ask the user for a number between 1 and 10
 Draw that many squares

 Exercise 2: Write an algorithm to do the following:
 Ask the user for a number between 1 and 10
 Ask the user for a number between 1 and 255
 Draw the first number of squares with the pen color set to

the second number

Input

 So far, we’ve only used simple numbers
 It would probably be nice if we could do some

math
 Check out the Operators category
 The first four blocks are your basic arithmetic

operators
 At the bottom are some more useful operations
 As always, notice the shapes– where can we use these

blocks?

Doing Arithmetic

 Exercise: Write an algorithm to do the
following:
 Ask the user for a number between 1 and 5
 Draw twice that many squares

Doing Arithmetic

 See the hexagon-shaped hole in ?
What goes there?
 Look around for blocks with that shape. What does it look like they

do?

Booleans

 Hexagon-shaped blocks represent Boolean
expressions
◦ Named after 19th century English mathematician

George Boole
 Boolean expressions evaluate to either true

or false

 Boolean expressions are used in conditions

 Conditions control whether or not certain blocks are executed
 The blocks inside of an “if” are executed if and only if the condition is

true
 The blocks inside of an “else” are executed if and only if the condition

is false
 Look at the “Sensing” category for lots of interesting things you

can test

Conditions

 You can also use conditions in loops
 is like forever, but the body only

executes when the condition is true
▪ Will stop then start again if things change

 loops until the condition is true, then
moves on

 Play with these, as they can be quite useful

Conditional Loops

 Boolean expressions can be combined in certain ways

 An and expression is true when both parts are true
 An or expression is true is when at least one part is

true
 A not expression is true when the component

expression is false

Boolean Operators

 Truth Tables:

Boolean Operators

AND T F

T T F

F F F

OR T F

T T T

F T F

NOT

T F

F T

 Exercise 1: Write an algorithm to do the following:
 Generate a random number between 1 and 10
 Draw a red square if the number is less than 6
 Draw a blue square if the number is 6 or greater

 Exercise 2: Write an algorithm to do the following:
 Generate two random numbers between 1 and 10
 If both are less than 6, draw a red square
 If both are 6 or greater, draw a blue square
 Otherwise, draw a purple square

Conditions/Booleans

 Sprites can cause each other to act in certain
ways by using and

 This sends out a message which can be picked
up by other objects

 These messages are called events
 Events have unique names, and any sprite can

broadcast or listen for any event

Events

 Exercise: Implement “Marco Polo”
 Create one object at the center of the stage
 Create another object at a random location and hide it
 The arrow keys control the motion of the first object
 When space is pressed, the first object should say “Marco”

after which the second sprite should briefly show itself and
say “Polo”

 If the first sprite says “Marco” when it is touching the
second, the second sprite should appear and say “Found
me!”

Events

