Unit 2 Assessment 1 Most Missed Questions

Name Date TOTAL: (REI.1) /3 (REI.3 and ACED.4) /2 (REI.5 and REI.6) /4

1. REI.1 The following procedure was used to solve an equation.

Line 1:
$$\frac{x+2}{x-3} = 5$$

Line 2: $\left(\frac{1}{x-3}\right)(x+2) = 5$
Line 3: $(x-3)\left(\frac{1}{x-3}\right)(x+2) = 5(x-3)$
Line 4: $1(x+2) = 5(x-3)$
Line 5: $x + 2 = 5x - 15$
Line 6: $17 = 4x$
Line 7: $\frac{17}{4} = x$

Which property assures the equation in line 4 is equivalent to the equation in line 3?

C. Multiplicative **D**. Reflexive **A.** Commutative **B.** Associative inverse

2. REI.1 Which statement is justified by the symmetric property of equality?

A. If 2 + x = y, then x + 2 = y**B.** If x + 2 = y, then x + 2 = y

C. If x + 2 = y and y = 5, then x + 2 = 5 **D**. If x + 2 = y, then y = x + 2

3. REI.1 Which statement illustrates the reflexive property of equality?

A. 3 + a = a + 3 **B**. If 3 + a = 5, then 3 + a - 5 = 5 - 3

C. If 3 + a = 5, then 5 = 3 + a **D**. 3 + a = 3 + a $\frac{2}{3}x + 9 = 18?$ 4. REI.3

What is the value of x in the equation

Α. **B.** 13.5 **C.** 18.0 **D.** 40.5 6.0

5. A.CED.4

$$P=rac{R-C}{N}$$
 , solve for R.

A.
$$R = \frac{P-C}{N}$$
 B. $R = PN + C$ C. $R = PC - N$ D. $R =$

6. REI.6

Manuel has a bowl of quarters and dimes. There are 45 coins totaling \$8.85. To find the number of each coin, Manuel used a system of linear equations and graphed them in the coordinate plane.

Based on the graph, about how many quarters are in the bowl?

7. REI. 5 Read the following and answer the questions below: -2x - y = -95x - 2y = 18

y =

8. REI. 5 Read the following and answer the questions below:
-4x + 9y = 9 x - 3y = -6 Using the elimination method, Joe solved the system of equations the following steps.

 $\begin{cases} 2x + y = 9\\ 3x - 2y = 10 \end{cases}$ for y with

Steps	Reasons
1. $\begin{cases} 2x + y = 9 \\ 3x - 2y = 10 \end{cases}$	1. Given
2. $\begin{cases} 3(2x + y = 9) \\ 3x - 2y = 10 \end{cases}$ $\begin{cases} 6x + 3y = 27 \\ 3x - 2y = 10 \end{cases}$	2. Multiply the first equation by 3
3. $\begin{cases} 6x + 3y = 27 \\ -2(3x - 2y = 10) \end{cases} = \begin{cases} 6x + 3y = 27 \\ -6x - 4y = -20 \end{cases}$	3. Multiply the second equation by -2
4. $\frac{\begin{cases} 6x + 3y = 27\\ -6x - 4y = -20 \end{cases}}{-y = 7}$	4. Add the resulting equations from step 1 and step 2
5. $\frac{-y}{-1} = \frac{7}{-1}; y = -7$	 Divide both sides of the equation by -1

Which statement **correctly** identifies the mistake Joe made?

- **A.** In step 3, Joe multiplied the term $^{-2y}$ by 2 instead of by $^{-2}$.
- **B.** In step 4, Joe simplified 27 + (-20) as ⁷ instead of simplifying to ⁻⁷.
- **C.** In step 2, Joe should have multiplied the first equation by 2 instead of by 3 .
 - **D.** In step 5, Joe should have added ¹ to both sides of the equation instead of dividing both sides of the equation by $^{-1}$.

9. REI. 5