Types of Chemical Reactions ## Types of Chemical Reactions - 1. Synthesis reactions - 2. Decomposition reactions - 3. Single displacement reactions - 4. Double displacement reactions - 5. Combustion reactions - 6. Redox Reactions According to your Performance Standards, you need to be able to identify each type. Let us first understand each type of reactions ### Watch the movie and then complete the chart. | Reaction | Definition | ★ Equation | |-----------------------|--|--| | Synthesis | Two or more elements or compounds combine to make a more complex substance | $\begin{array}{c} A + B \rightarrow AB \\ \bullet + \bullet \rightarrow \bullet \bullet \bullet \end{array}$ | | Decomposition | Compounds break down into simpler substances | $AB \rightarrow A + B$ | | Single
Replacement | Occurs when one element replaces another one in a compound | $AB + C \rightarrow AC + E$ $00 + 0 \rightarrow 00 + 0$ | | Double
Replacement | Occurs when different atoms in two different compounds trade places | AB + CD → AB + CD → + ○ → + ○ | ### **Combustion Reaction** # The burning of carbon or carbon compounds to give carbon dioxide and water. Note: You will get only carbon dioxide when carbon burns; No water will be formed. $$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$ $$CH_{4(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(I)}$$ ### **Redox Reaction** #### **Reaction between two cations** The ion with higher charge becomes an ion with smaller charge (Reduction); the ion with smaller charge becomes an ion with higher charge (Oxidation) $$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$ (oxidation half - reaction) $Ce^{4+} + e^{-} \rightarrow Ce^{3+}$ (reduction half - reaction) $Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$ (Overall reaction) ### **Identify the Types of Chemical Reaction in each of the following** Balance the reactions **1 to 6** and indicate which type of chemical reaction (synthesis, decomposition, single-displacement, double-displacement or combustion) is being represented: 1. ____ NaBr + ___ Ca(OH)₂ $$\rightarrow$$ ___ CaBr₂ + ___ NaOH Reaction Type : ____ 1. ____ $$NH_3+$$ ____ $H_2SO_4 \rightarrow$ ____ $(NH_4)_2SO_4$ Reaction Type : _____ 1. ____ $$C_5H_9O +$$ ____ $O_2 \rightarrow$ ____ $CO_2 +$ ___ H_2O Reaction Type : ____ 1. ____ Pb + ___ $$H_3PO_4 \rightarrow$$ ___ H_2 + ___ Pb₃(PO₄)₂ Reaction Type : ____ 1. ____ Li₃N + ___ NH₄NO₃ $$\rightarrow$$ ___ LiNO₃ + ___ (NH₄)₃N Reaction Type : ____ 1. ____ HBr + ___ Al(OH)₃ $$\rightarrow$$ ___ H₂O + ___ AlBr₃ Reaction Type : ____ Indicate which type of chemical reaction (synthesis, decomposition, single-displacement, double-displacement or combustion) is being represented in 7 to 20. | $Na_3PO_4 + 3 KOH \rightarrow 3 NaOH + K_3PO_4$ | Reaction Type | |---|---------------| | MgCl₂ + Li₂CO₃ → MgCO₃ + 2 LiCl | Reaction Type | | $C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O$ | Reaction Type | | Pb + FeSO ₄ \rightarrow PbSO ₄ + Fe | Reaction Type | | CaCO ₃ → CaO + CO ₂ | Reaction Type | | $P_4 + 3 O_2 \rightarrow 2 P_2 O_3$ | Reaction Type | | 2 RbNO ₃ + BeF ₂ \rightarrow Be(NO ₃) ₂ + 2 RbF | Reaction Type | | 2 AgNO ₃ + Cu → Cu(NO ₃) ₂ + 2 Ag | Reaction Type | | $C_3H_6O + 4 O_2 \rightarrow 3 CO_2 + 3 H_2O$ | Reaction Type | | $2 C_5H_5 + Fe \rightarrow Fe(C_5H_5)_2$ | Reaction Type | | $SeCl_6 + O_2 \rightarrow SeO_2 + 3Cl_2$ | Reaction Type | | 2 MgI ₂ + Mn(SO ₃) ₂ \rightarrow 2 MgSO ₃ + MnI ₄ | Reaction Type | | $O_3 \rightarrow O_1 + O_2$ | Reaction Type | | $2 NO_2 \rightarrow 2 O_2 + N_2$ | Reaction Type |