Turkey Trouble – Population Growth Rates Simulation-A

Background:

Population growth rates can occur in two ways – linearly (by a fixed amount) or exponentially (by an ever-increasing rate). Population growth is limited by many factors including availability and quality of water, food, shelter, and territory as well as natural and man-made changes in habitat.

In 1935, Wyoming had no Merrimac turkey's within its borders. A decision was made to plant 46 turkeys in a mountainous area in the state. This activity simulates what would happen to their population over a 5 year period if there were no natural or human-made limiting factors.

Part 1: Linear Population Growth

- 1. Calculate the size of the population of Merrimac turkeys using a linear growth model for five years assuming that the population grows by 230 offspring each year.
- 2. Complete the Table 1 to calculate the population if linear population growth occurs.

Table 1—Linear Growth

	Year					
	1	2	3	4	5	6
Population	46	276	506			
+ increase	230	230				
= total	276	506				

Part 2: Exponential Population Growth

1. Calculate the size of the population of Merrimac turkeys using an exponential growth model for five years based on the following assumptions:

Assumptions:

- 1. None of the turkeys left the general area during the 5 years (no migration).
- 2. No disease or shortage of habitat limited the population.
- 3. There were an equal number of males and females in each year's hatch.
- 4. All sexually mature females successfully hatched a clutch of ten eggs each year.
- 5. No turkeys reproduced their first year of life.
- 6. All turkeys died during the winter after their fifth year of life (after hatching their 4th clutch).
- 7. All of the turkeys introduced were one year old and sexually mature.
- 8. There were an equal number of males and females in the original 46 breeding group.

2. Complete Table 2 to calculate the population if exponential population growth occurs:

	Year					
	1	2	3	4	5	6
1. Beginning population	46	276	506			
2. $-$ five year olds	0	0	0	0	46	230
3. $-$ last years hatch (#6)	0	230	230			
4. = Breeding population	46	46	276			
5. Breeding pairs (#4/2)	23	23				
6. Offspring (#5x10 eggs/clutch)	230	230				
+ breeding population (#4)	46	46				
+ last year's hatch (#3)	0	230				
7. = Total population	276	506				

Analysis:

- 1. Plot the data for linear population growth from Table 1 on the grid below in pen.
- 2. Plot the data for exponential population growth from Table 2 on the grid below in pencil.

	Рор	<u>ulation vs. Yea</u>	r		
36,000					
34,000					
32,000					
30,000					
28,000					
26,000					
24,000					
22,000					
20,000					
18,000					
16,000					
14,000					
12,000					
10,000					
8,000					
6,000					
4,000					
2,000					
1	2	3	4	5	6
		Year			

Population vs. Year

<u>Conclusions</u>: (answer on notebook paper)

- 1. Which population grew at a faster rate? Why?
- 2. The actual population of Merrimac turkeys in Wyoming after 5 years was 2500. Why the difference? Which of our assumptions proved to true? False?
- 3. All populations have the potential to grow at an exponential rate. What factors limit this potential?