Triangle Midsegments

Warm Up Use the points A(2, 2), B(12, 2) and C(4, 8) for Exercises 1–5. (3, 5), (8, 5) **1.** Find X and Y, the midpoints of AC and CB. **2.** Find *XY*. 5 **3.** Find *AB*. 10 **4.** Find the slope of *AB*. **5.** Find the slope of XY. **6.** What is the slope of a line parallel to 2 3x + 2y = 12?

Prove and use properties of triangle midsegments.

midsegment of a triangle

A <u>midsegment of a triangle</u> is a segment that joins the midpoints of two sides of the triangle. Every triangle has three midsegments, which form the *midsegment triangle*.

Midsegments: XY, YZ, ZX

Midsegment triangle: $\triangle XYZ$

Example 1: Examining Midsegments in the Coordinate Plane The vertices of ΔXYZ are X(-1, 8), Y(9, 2), and Z(3, -4). *M* and *N* are the midpoints of XZ and YZ. Show that $\overline{MN} \parallel \overline{XY}$ and $MN = \frac{1}{2}XY^{-1}$ **Step 1** Find the coordinates of *M* and *N*.

mdpt. of
$$\overline{XZ} = \left(\frac{-1+3}{2}, \frac{8+(-4)}{2}\right) = (1, 2)$$

mdpt. of $\overline{YZ} = \left(\frac{9+3}{2}, \frac{2+(-4)}{2}\right) = (6, -1)$

Example 1 Continued

Step 2 Compare the slopes of \overline{MN} and \overline{XY} .

slope of
$$\overline{MN} = \frac{-1-2}{6-1} = -\frac{3}{5}$$

slope of $\overline{XY} = \frac{2-8}{9-(-1)} = -\frac{3}{5}$

Since the slopes are the same, $\overline{MN} \parallel \overline{XY}$.

Example 1 Continued

Step 3 Compare the heights of \overline{MN} and \overline{XY} .

$$MN = \sqrt{(6-1)^2 + (-1-2)^2} = \sqrt{34}$$

$$XY = \sqrt{\left[9 - (-1)\right]^2 + (2 - 8)^2} = 2\sqrt{34}$$

Since
$$\sqrt{34} = \frac{1}{2} (2\sqrt{34}), MN = \frac{1}{2} XY.$$

Check It Out! Example 1

The vertices of $\triangle RST$ are R(-7, 0), S(-3, 6), and T(9, 2). M is the midpoint of \overline{RT} , and N is the midpoint of \overline{ST} . Show that $\overline{MN} \parallel \overline{RS}$ and $MN = \frac{1}{2}RS$.

Step 1 Find the coordinates of *M* and *N*.

mdpt. of
$$\overline{RT} = \left(\frac{-7+9}{2}, \frac{0+2}{2}\right) = (1, 1)$$

mdpt. of
$$\overline{ST} = \left(\frac{-3+9}{2}, \frac{6+2}{2}\right) = (3, 4)$$

Check It Out! Example 1 Continued

Step 2 Compare the slopes of \overline{MN} and \overline{RS} .

slope of
$$\overline{MN} = \frac{3}{2}$$

slope of $\overline{RS} = \frac{3}{2}$

Since the slopes are equal $\overline{MN} \parallel \overline{RS}$.

Check It Out! Example 1 Continued

Step 3 Compare the heights of \overline{MN} and \overline{RS} .

$$MN = \sqrt{(4-1)^2 + (3-1)^2} = \sqrt{13}$$

$$RS = \sqrt{(6-0)^2 + [-3-(-7)]^2} = \sqrt{52} = 2\sqrt{13}$$

The length of \overline{MN} is half the length of \overline{RS} .

The relationship shown in Example 1 is true for the three midsegments of every triangle.

Example 2A: Using the Triangle Midsegment Theorem

Example 2B: Using the Triangle Midsegment Theorem

m∠*CBD*

 $DF \parallel CA$ Δ Midsegment Thm.

 $m \angle CBD = m \angle BDF$ Alt. Int. $\angle s$ Thm.

 $m \angle CBD = 26^{\circ}$ Substitute 26° for $m \angle BDF$.

Check It Out! Example 2a

$$PN = \frac{1}{2}JL \quad \Delta \text{ Midsegment Thm.}$$

2(36) = JL
$$\begin{array}{l} Substitute \ 36 \ for \ PN \ and \ multiply \\ both \ sides \ by \ 2. \end{array}$$

72 = JL Simplify.

Check It Out! Example 2b

102° M 36 N L 97

PM = 48.5 Simplify.

Check It Out! Example 2c

 $m \angle MLK = 102^{\circ}$ Substitute.

Example 3: Indirect Measurement Application

In an A-frame support, the distance PQ is 46 inches. What is the length of the support \overline{ST} if S and T are at the midpoints of the sides?

$$ST = \frac{1}{2}PQ \qquad \Delta \text{ Midsegment Thm.}$$
$$ST = \frac{1}{2}(46) \qquad \text{Substitute 46 for PQ.}$$
$$ST = 23 \qquad \text{Simplify.}$$

The length of the support *ST* is 23 inches.

Check It Out! Example 3

What if...? Suppose Anna's result in Example 3 (p. 323) is correct. To check it, she measures a second triangle. How many meters will she measure between *H* and *F*?

 $HF = \frac{1}{2}AE \qquad \Delta \text{ Midsegment Thm.}$ $HF = \frac{1}{2}(1550) \quad \text{Substitute 1550 for AE.}$ HF = 775 m Simplify.

Lesson Quiz: Part I

Use the diagram for Items 1–3. Find each measure.

- **1.** ED **10**
- **2.** *AB* 14
- **3.** m∠*BFE* 44°

Lesson Quiz: Part II

4. Find the value of *n*.

5. $\Delta X Y \geq IS$ the midsegment triangle of ΔWUV .

What is the perimeter of ΔXYZ ?

11.5