Lessons 4.1 and 4.2 Triangle Sum Properties & Properties of Isosceles Triangles - Glassify triangles and find measures of their angles. - Discover the properties of Isosceles Triangles,

> HOMEWORK: Lesson 4.1/1-9 and 4.2/1-10

Classification By Sides

Classifying Triangles

In classifying triangles, be as specific as possible.

Acute, Scalene

Obtuse, Isosceles

Triangle Sum Theorem **NEW

The sum of the measures of the interior angles of a triangle is 180°.

m<1 + m<2 + m<3 = 180°

Property of triangles

The sum of all the angles equals 180° degrees.

Property of triangles

The sum of all the angles equals 180° degrees.

60° 60° + 60° 180°

 $189 - 120 = 60^{\circ}$

90°, 70°, 20°

What can we find out?

The ladder is leaning on the ground at a 75° angle. At what angle is the top of the ladder touching the building?

180 = 75 + 90 + x180 = 165 + x $15^{\circ} = x$

Corollary to Triangle Sum Theorem A COrollary is a statement that readily follows from a theorem.

The *acute* angles of a right triangle are *complementary*.

 $m \angle A + m \angle B = 90^{\circ}$

Find the missing angles.

The tiled staircase shown below forms a right triangle.

The measure of one acute angle in the triangle is twice the measure of the other angle.

Find the measure of each acute angle.

Find the missing angles.

SOLUTION:

2x + x = 903x = 90 $x = 30^{\circ}$ $2x = 60^{\circ}$

Find the missing angles.

 $2x + (x - 6) = 90^{\circ}$ 3x - 6 = 90 3x = 96x = 32 $2x = 2(32) = 64^{\circ}$

 $(x-6) = 32 - 6 = 26^{\circ}$

Properties of an Isosceles Triangle

Parts of an Isosceles Triangle:

The *vertex* angle is the angle between two congruent sides

Parts of an Isosceles Triangle:

The base angles are the angles opposite the congruent sides

Parts of an Isosceles Triangle:

The base is the side opposite the vertex angle

Isosceles Triangle Conjecture If a triangle is isosceles, then **base** angles are congruent.

<u>Converse</u> of Isosceles Triangle Conjecture If a triangle has two congruent angles, then it is an isosceles triangle.

then

If

Equilateral Triangle Triangle with all three sides are congruent

Equilateral Triangle Conjecture An equilateral triangle is equiangular, and an equiangular triangle is equilateral.

<68° and < a are base angles →
they are congruent

m∠a = **68**°

Triangle sum to find <bm < b = 180 - 68 - 68m < b = 180 - 136

m∠b = **4**4°

68°

b

a

<c & <d are base angles and are congruent 🛪 🕅

Find m∠G.

\triangle GHJ is isosceles •• < G = < J

x + 44 = 3x44 = 2x

x = **22**

1

Find m∠*N*

Base angles are = 6y = 8y - 16 -2y = -16y = 8

Thus $m < N = 6(8) = 48^{\circ}$. $m < P = 8(8) - 16 = 48^{\circ}$

Using Properties of Equilateral Triangles

Find the value of x.

 ΔLKM is equilateral m < K = m < L = m < M

 $180/3 = 60^{\circ}$

 $K \xrightarrow{L} (2x + 32)^{\circ}$

2x + 32 = 602x = 37 $x = 18.5^{\circ}$

AN

Find the missing side measures.

Using Properties of Equilateral Triangles

Find the value of y.

 ΔNPO is equiangular \bullet ΔNPO is also equilateral.

$$5y - 6 = 4y + 12$$

 $y - 6 = 12$
 $y = 18$

Side NO = $5(18) - 6 = 90 \text{ft}_{3}$

Using the symbols describing shapes answer the following questions:

Isosceles triangle Two angles are equal $a = 36^{\circ}$ $b = 180 - (2 \times 36)$ $= 108^{\circ}$

Equilateral triangle all angles are equal $c = 180 \div 3 = 60^{\circ}$

Right-angled triangle

 $d = 180 - (45) = 45^{\circ}$

1 Work out the angles marked by letters.

Get Real!

The diagram shows a cross-legged stool.

Calculate the angles marked by letters.

 $p = 50^{\circ}$ $q = 180 - (2 \times 50^{\circ}) = 80^{\circ}$ $r = q = 80^{\circ}$ vertical angles are equal
Therefore : $s = t = p = 50^{\circ}$

 $' \Lambda$

Calculate the angles marked by letters.

Not drawn accurately

 $a = b = c = 60^{\circ}$ $p = q = r = 60^{\circ}$ $d = 180 - 60 = 120^{\circ}$ e + 18 = a = 60 $exterior \ angle = sum \ of \ remote \ interior \ angles$ $e = 60 - 18 = 42^{\circ}$

R

1) Find the value of x

2) Find the value of y

1) x is a base angle
180 = x + x + 50
130 = 2x
x = 65°

2) y & z are remote interior angles and base angles of an isosceles triangle Therefore: y + z = x and y = z $y + z = 80^{\circ}$ $y = 40^{\circ}$

Find the value of x
 Find the value of y

1) \triangle CDE is equilateral All angles = 60° Using Linear Pair <BCD = 70° x is the vertex angle x = 180 - 70 - 70 x = 40°

Homework

In your textbook: Lesson 4.1/ 1-9; 4.2/ 1-10

