The Microscope

-

The History

- Hans and Zacharias Janssen of Holland in the 1590's created the "first" compound microscope
- Anthony van Leeuwenhoek and Robert Hooke made improvements by working on the lenses

Anthony van Leeuwenhoek 1632-1723

Hooke Microscope

Robert Hooke 1635-1703

The History

Zacharias Jansen 1588-1631

The "First" Microscope

History

- 1903 Richard Zsigmondy developed the ultramicroscope that could study objects below the wavelength of light. He won the Nobel Prize in Chemistry in 1925.
- 1931 Ernst Ruska co-invented the <u>electron</u> <u>microscope</u> for which he won the Nobel Prize in Physics in 1986. An electron microscope depends on electrons rather than light to view an object, electrons are speeded up in a vacuum until their wavelength is extremely short, only one hundred-thousandth that of white light. Electron microscopes make it possible to view objects as small as the diameter of an atom.

How a Microscope Works

Convex Lenses are curved glass used to make microscopes (and glasses etc.)

Convex Lenses bend light and focus it in one spot.

How a Microscope Works

Ocular Lens (Magnifies Image)

Body Tube (Image Focuses)

Objective Lens (Gathers Light, Magnifies And Focuses Image Inside Body Tube)

•Bending Light: The objective (bottom) convex lens magnifies and focuses (bends) the image inside the body tube and the ocular convex (top) lens of a microscope magnifies it (again).

The Parts of a Microscope

Body Tube

 The body tube holds the objective lenses and the ocular lens at the proper distance

Nose Piece

 The Nose Piece holds the objective lenses and can be turned to increase the magnification

Objective Lenses

 The Objective Lenses increase magnification (usually from 10x to 40x)

Stage Clips

 These 2 clips hold the slide/specimen in place on the stage.

Diaphragm

 The Diaphragm controls the amount of light on the slide/specimen

Diagram

Turn to let more light in or to make dimmer.

Light Source

- Projects light upwards through the diaphragm, the specimen and the lenses
- Some have lights, others have mirrors where you must move the mirror to

reflect light

Diagram

Ocular Lens/Eyepiece

Magnifies the specimen image

Diagram

Arm

 Used to support the microscope when carried. Holds the body tube, nose piece and objective lenses

Stage

Supports the slide/specimen

Coarse Adjustment Knob

 Moves the stage up and down (quickly) for focusing your image

Fine Adjustment Knob

 This knob moves the stage SLIGHTLY to sharpen the image

Base

• Supports the microscope

Diagram

Magnification

TT

Magnification

- To determine your magnification...you just multiply the ocular lens by the objective lens
- Ocular 10x Objective 40x:10 x 40 = 400

So the object is 400 times "larger"

 Objective Lens have their magnification written on them.

Ocular lenses usually magnifies by 10x

Caring for a Microscope

- Clean only with a soft cloth/tissue
- Make sure it's on a flat surface
- Only use lens paper for cleaning
- Carry it with 2 HANDS...one on the arm and the other on the base

Carry a Microscope Correctly

Using a Microscope

- Start on the lowest magnification
- Don't use the coarse adjustment knob on high magnification...you'll break the slide!!!
- Place slide on stage and lock clips
- Adjust light source
- Use fine adjustment to focus

References

- http://www.cerebromente.org.br/n17/history.neurons1_i.htm
- Google Images
- http://science.howstuffworks.com/light-microscope1.htm

This powerpoint was kindly donated to www.worldofteaching.com

http://www.worldofteaching.com is home to over a thousand powerpoints submitted by teachers. This is a completely free site and requires no registration. Please visit and I hope it will help in your teaching.