Name:	Date:	Block:

The Big Picture: A Review of Biology for the EOCT

INTRODUCTION TO	BIOLOGY	/ SCIENTIFIC	METHOD
INTRODUCTION TO	DIOLOGI		MILTIOD

- 1. Define biology
- 2. What is the difference between a unicellular & a multicellular organism?
- 3. List the characteristics of life
- 4. What is homeostasis and give an example?
- 5. List the 6 steps of the scientific method:
- 6. Independent variable:

Dependent variable:

CHEMISTRY OF LIFE

- 7. What is an organic compound?
- 8. Fill in the table:

Macromolecule	What is it made of? What are its building blocks?	What is it used for?	Examples of how it is used in body
		enzymes- speed up rxns hormones- send messages thru body structural- hair, nails, skin	Amylase, insulin, hair, nails, every part of your cells!
Carbohydrates	Monosaccharides (glucose & other simple sugars)		
	Fatty acids and glycerol		
Nucleic Acids		Storing genetic information & Protein synthesis	

9.	An enzyme is a	that speeds up	by lowering the
	amount of	needed which makes the reaction happen faster.	

Organelle Structure		Organelle Fun	ction	P
19. Fill in the organell	e table:			
18. What are the differ	ences between	n plant and animal cells?		
17. What are the chara	cteristics of a	eukaryote?		
CELLS 16. What are the chara	cteristics of a	prokaryote?		
15. A pH of is r	etural;	is an acid;	is a base.	
14. The pH scale range	es from			
13. What do we call th	e reason that i	it is hard to change water	's temperature?	
12. What is adhesion?				
11. What is cohesion?				
10. Water molecule is	made up of?			

Organelle Structure	Organelle Function	Plant, Animal, or Both?
Nucleus		
Nucleolus		
	Smallest organelle, site of protein synthesis	
	Long channels where ribosomes pass while they make proteins	
	Takes proteins from ribosomes, reorganizes & repackages them to leave cell	
	Store digestive enzymes to clean up dead cell parts, bacteria, etc	
Vacuole		
	Controls what goes in & out of cell; maintains homeostasis	
	Makes ATP from food we eat & stores ATP (energy storage molecule); site of cellular respiration	

Chloroplast					
	Outermost made of ce	•	ant cell; gives support &	protection;	
20. What is the fu	inction and struct	ture of the cell m	nembrane?		
21. What are the	2 ways things are	transported acr	oss the cell membrane? C	Give 2 example	s of both.
22. What type of	cellular transport	requires a cell t	to use energy?		
23. What is the te	rm that describes	s the movement	of water through a cell?		
24. A hypotonic s	solution causes a	cell to	? Why?		
25. A hypertonic	solution causes a	cell to	? Why?		
26. An isotonic se	olution causes a c	cell to	? Why?		
27. What is the pr	cocess by which o	organisms use er	nergy from sunlight to ma	ake their own f	ood (glucose)?
28. What is the pr	cocess that breaks	s down glucose i	in order to make energy f	or an organism	?
29. Write the equ	ations for cellula	r respiration and	l photosynthesis		
30. What are som	e things DNA an				
	uses	to make a	copy of a segment of _	·	It happens in the
33. Translation re It happens wh		and bu	ailds the protein using the	matching	·
34. If one side of	the DNA molecu	ıle reads ATGC	CGT, what would the cor	nplementary si	de read?
35. Mitosis . Mai	kes new Th	cells. ne daughter cells	Starts with cells that are are	e diploid and e	nds with cells that cell.
36. Meiosis . Ma with cells that parent cell.	kest are	Star	ts with cells that are The daughter cells are		and ends up the
37. What are the	benefits of asexua	al reproduction?	•		
38. What are the	benefits of sexual	l reproduction?			

39.	vv mat a	ire different version	is of a gene for the	e same man caneu.	•		
40.	What i	s the difference bet	ween a genotype	and phenotype? A	nd give an examp	le of both.	
41.	The	al	lele masks the	allel	e.		
42. 1	a. b.	the letter G, write the Heterozygous: Homozygous dom Homozygous rece	inant:	ne following:			
		agram below show are the genotypes of					
			3b ob				
26.	What i	s the difference bet	ween co-dominan	ce and incomplete	dominance?		
27. \	What c	loes a pedigree sho	w and what type o	of diseases is it bes	t used to determin	ne?	
28.	The sy name i	ation and EVO stem we use to nar s thee levels of classific	me organisms is c	calledad name is the		·	The first
		evel of classification		vest organisms?			
31.1	Fill in	the table of the don					
		(no nucleus or mer organelles)		(have a nucleus	ES and membrane bou	and organelles)	
Doma	in	DOMAIN ARCHAEA	DOMAIN BACTERIA	DOMAIN EU	KARYA		
Kingd	lom						
Characteri	istics	Extreme bacteria	Common bacteria	Mostly unicellular		mostly Multicellul ar	Multicellular

	Prefer salty, hot, or high pH environment	Prefer normal warm, moist environment	Cell walls made of cellulose in some		Cell walls made of chitin	No cell walls
			Autotrophic or heterotrophic			
32. Viruse They d	s are not considere	d or	because they	y do not exhibit hat doesn't work	the characteri	stics of life.
33. Who d	eveloped the curren	nt theory of evolution	ion?			
a. b. c. d.	All organisms production All organisms production All offspring are	duce more offsprings allow some offsperings traits	oring to to pa	ss their genes or	the oth	the fittest)
	nappened to the mot					1
						le:
37	: 2	species evolve in	response to each of	other. Example:		
38	evo nments. Example:	olution: 2 species	s evolve to have t	he same trait be	ecause they liv	e in similar
	are three types of ev	idence:				
			1.			
	s a homologous stru		•			
41. Analog	gous structures have	e different	but s	similar	E	xample?
42. What i	s a vestigial structur	re? Give example	s.			
43. What o	loes a cladogram sh	now us?				
44. What i	s a dichotomous ke	y used for?				
ECOLOGY 45. What a	are the levels of eco	logy from smalles	t to largest?			
46. What i	s the difference bet	ween a food chain	and a food web?			
47. Trophi	c levels: Producers:	their for	nd	of food chain		
	Primary consumers				_	

	c. Secondary consu	mers:	that gets ener	gy from	•
	d. Tertiary consume	ers:	or	that gets energy from	om
		mer.			
48. Wh	at is the difference be	etween how decompose	ers and detritivores ge	t energy? Give examples	of each.
49. Ene	ergy pyramids show	that energy	as you	go up the food chain.	The top
		in an ecosystem gets the	e least energy.	also	decreases
as y	you go up the food ch	ain.			
50. Bio	geochemical cycles	show how nutrients a	and chemicals must	be	so new
org	anisms can grow. Ex	camples of cycles:			
51		_ Succession is when	life happens in an	n environment for the f	irst time.
	ample:				
52		Succession is when lif	Fe happens after a dist	urbance.	
Exa	ample:				
53. Mo	st populations show _		growth when there	is plenty of resources.	
54. Wh	nen factors become lin	mited, the population g	rowth levels off and	begin to show	
gro	wth.				
55. The	e population numbe	ers hover around the			of that
		of organisms that can b			
56. Fill	in the biomes table:	-			

BIOME	CLIMATE	PLANT ADAPTATIONS	ANIMAL ADAPTATIONS
	Warm all year round Gets most precip.	Layered forest Broad, big leaves to capture sunlight in understory; variety of seed adaptations	Arboreal (live in trees); long prehensile tails, gliders; insects, monkeys
	High temperatures Low precipitation	Succulents- store water; spines for protection and decreased transpiration; cacti, aloe	Large ears to dissipate heat; burrowers; nocturnal; insects, reptiles, coyotes, jack rabbits
	High temperatures Moderate precipitation Savanna's get more rainfall than prairies Frequent fires	Tall grasses; a few trees near sources of water	Grazing animals Feed at different levels to avoid competition Burrowing animals
	Moderate temperature Moderate precipitation	Deciduous trees- lose leaves in winter to conserve water Oaks, hickory, maple, sweetgum	Hibernate in winter Dull colors to blend in with tree trunks or dead leaves in fall/winter Deer, raccoons, squirrels, snakes
	Long, cold winters Short cool summers	Evergreen/coniferous trees- wax on needles prevents water loss so they keep leaves all year; thick bark; pyramid shaped tree to slough snow; shallow roots	Broad hooves/feet to walk on snow; thick fur/blubber; moose, elk, wolverines, insects
	Long cold winters Short cool summers	Small plants to prevent water loss, grow close to ground to get maximum sun/warmth; lichens, moss, small flowering plants	Broad hooves/ feet to walk on snow; thick fur/blubber; hibernate; polar bears, caribou/reindeer, seals