Algebra II Syllabus

School Phone: (770) 954 – 9515

Text: Henry County School GSE Advanced Algebra Flexbook .

Georgia Standards; Frameworks located at www.georgiastandards.org

Algebra II is a rigorous integrated mathematics course covering the topics listed in the content map below. This class is designed for the math student who is seeking a background that will prepare the student for advanced math and science courses. Students should be self-motivated and exhibit excellent study skills to properly succeed.

be self-motivated and exhibit excellent study skills to properly succeed.				
Standards Fall Semester				
Unit 1	Unit 2	Unit 3	Unit 4 (Split between both semesters)	
Quadratics Revisited	Operations With Polynomials	Polynomial Functions	Rational & Radical Relationships	
<u>Perform arithmetic</u> operations with complex	Perform arithmetic operations on polymorpiala	MGSE9-12.N.CN.9– Use the Fundamental Theorem of Algebra to find	<u>Rewrite rational expressions</u> MGSE9-12.A.APR.7– Understand that	
numbers.	polynomials MGSE9-12.A.APR.1– Add,	all roots of a polynomial equation.	rational expressions form a system	
MGSE9-12.N.CN.1 -	subtract, and multiply polynomials;	Interpret the structure of expressions	analogous to the rational numbers, closed	
Understand there is a	understand that polynomials form a	MGSE9-12.A.SSE.1– Interpret	under addition, subtraction, multiplication,	
complex number <i>i</i> such that i^2	system analogous to the integers in	expressions that represent a quantity in	and division by a nonzero rational	
= -1, and every complex	that they are closed under these	terms of its context.	expression; add, subtract, multiply, and	
number has the form $a + bi$	operations.	MGSE9-12.A.SSE.1a- Interpret parts of	divide rational expressions.	
where a and b are real	MGSE9-12.A.APR.5- Know and	an expression, such as terms, factors, and	Create equations that describe numbers or	
numbers.	apply that the Binomial Theorem	coefficients, in context.	relationships	
MGSE9-12.N.CN.2 – Use	gives the expansion of $(x + y)^n$ in	MGSE9-12.A.SSE.1b- Given situations	MGSE9-12.A.CED.1– Create equations and	
the relation $i^2 = -1$ and the	powers of x and y for a positive	which utilize formulas or expressions with	inequalities in one variable and use them to	
commutative, associative,	integer n, where x and y are any	multiple terms and/or factors, interpret the	solve problems. Include equations arising	
and distributive properties to	numbers, with coefficients	meaning (in context) of individual terms or	from linear, quadratic, simple rational, and	
add, subtract, and multiply	determined for example by Pascal's	factors. MGSE9-12.A.SSE.2– Use the structure of	exponential functions.	
complex numbers. Use complex numbers in	Triangle. <i>Rewrite rational expressions</i>	an expression to rewrite it in different	MGSE9-12.A.CED.2 – Create linear, quadratic, and exponential equations in two	
polynomial identities and	MGSE9-12.A.APR.6- Rewrite	equivalent forms. For example, see $x^4 - y^4$	or more variables to represent relationships	
equations.	simple rational expressions in	as $(x^2)^2 - (y^2)^2$, thus recognizing it as a	between quantities; graph equations on	
MGSE9-12.N.CN.7 – Solve	different forms using inspection,	difference of squares that can be factored	coordinate axes with labels and scales. (The	
quadratic equations with real coefficients that have	long division, or a computer algebra system; write $a(x)/b(x)$ in the form	as (x ² -y ²)(x ² +y ²) Understand the relationship between zeros	phrase "in two or more variables" refers to formulas like the compound interest	
complex solutions by (but not	q(x) + r(x)/b(x), where $a(x)$, $b(x)$,	<i>Understand the relationship between zeros</i> and factors of polynomials	formulas like the compound interest formula, in which $A = P(1+r/n)^{nt}$ has	
limited to) square roots,	q(x) + I(x)/b(x), where $a(x)$, $b(x)$, q(x), and $r(x)$ are polynomials with	MGSE9-12.A.APR.2 – Know and apply	multiple variables.) multiple variables $(1+1/1)$ mas	
completing the square, and	the degree of $r(x)$ less than the	the Remainder Theorem: For a polynomial	Understand solving equations as a process	
the quadratic formula.	degree of $b(x)$.	p(x) and a number a, the remainder on	of reasoning and explain the reasoning	
MGSE9-12.N.CN.8 – Extend	Build a function that models a	division by x-a is $p(a)$, so $p(a) = 0$ if and	MGSE9-12.A.REI.2– Solve simple rational	
polynomial identities to	relationship between two quantities	only if $(x-a)$ is a factor of $p(x)$.	and radical equations in one variable, and	
include factoring with	MGSE9-12.F.BF.1– Write a	MGSE9-12.A.APR.3- Identify zeros of	give examples showing how extraneous	
complex numbers. For	function that describes a	polynomials when suitable factorizations	solutions may arise.	
example, rewrite $x^2 + 4$ as (x	relationship between two quantities.	are available, and use the zeros to	MGSE9-12.F.IF.4– Using tables, graphs,	
+2i)(x-2i).	MGSE9-12.F.BF.1b- Combine	construct a rough graph of the function	and verbal descriptions, interpret the key	
Solve equations and inequalities in one variable.	standard function types using arithmetic operations in contextual	defined by the polynomial. Use polynomial identities to solve	characteristics of a function which models the relationship between two quantities.	
MGSE9-12.A.REI.4 – Solve	situations (Adding, subtracting, and	problems	Sketch a graph showing key features	
quadratic equations in one	multiplying functions of different	MGSE9-12.A.APR.4– Prove polynomial	including: intercepts; interval where the	
variable.	types).	identities and use them to describe	function is increasing, decreasing, positive,	
MGSE9-12.A.REI.4b -	MGSE9-12.F.BF.1c- Compose	numerical relationahips. For example, the	or negative; relative maximums and	
Solve quadratic equations by	functions. For example, if $T(y)$ is	polynomial identity $(x^2+y^2)^2 = (x^2-y^2)^2 +$	minimums; symmetries; end behavior; and	
inspection (e.g., for $x^2 = 49$),	the temperature in the atmosphere	$(2xy)^2$ can be used to generate Pythagorean	periodicity.	
taking square roots, factoring,	as a function of height, and h(t) is	triples.	Interpret functions that arise in applications	
completing the square, and	the height of a weather balloon as a	Interpret functions that arise in	in terms of the context	
the quadratic formula, as	function of time, then $T(h(t))$ is the	applications in terms of the context	MGSE9-12.F.IF.5– Relate the domain of a	
appropriate to the initial form	temperature at the location of the	MGSE9-12.F.IF.4– Using tables, graphs,	function to its graph and, where applicable,	
of the equation. Extend the properties of	weather balloon as a function of time.	and verbal descriptions, interpret the key characteristics of a function which models	to the quantitative relationship it describes. For example, if the function $h(n)$ gives the	
exponents to rational	Build new functions from existing	the relationship between two quantities.	number of person-hours it takes to assemble	
exponents.	functions	Sketch a graph showing key features	n engines in a factory, then the positive	
MGSE9-12.N.RN.1 –	MGSE9-12.F.BF.4- Find inverse	including: intercepts; interval where the	integers would be an appropriate domain for	
Explain how the meaning of	functions	function is increasing, decreasing, positive,	the function.	
rational exponents follows	MGSE9-12.F.BF.4a-Solve an	or negative; relative maximums and	Analyze functions using different	
from extending the properties	equation of the form $f(x) = c$ for a	minimums; symmetries; and end behavior.	representations	
of integer exponents to	simple function f that has an inverse	Analyze functions using different	MGSE9-12.F.IF.7– Graph functions	
rational numbers, allowing	and write as expression for the inverse. For example, $f(x) = 2(x^3)$ or	representations MCSE0 12 E UE 7 Cranh functions	expressed algebraically and show key	
for a notation for radicals in terms of rational exponents.	inverse. For example, $f(x) = 2(x^3)$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$.	MGSE9-12.F.IF.7– Graph functions expressed algebraically and show key	features of the graph both by hand and by using technology.	
For example, we define $5^{(1/3)}$	$I(X) = (X+1)/(X-1)$ for $X \neq 1$. MGSE9-12.F.BF.4b– Verify by	features of the graph both by hand and by	MGSE9-12.F.IF.7b – Graph square root,	
to be the cube root of 5	composition that one function is the	using technology.	cube root, and piecewise-defined functions,	
because we want $(5^{(1/3)})^3 =$	inverse of another.	MGSE9-12.F.IF.7c– Graph polynomial	including step functions and absolute value	
$5^{((1/3)x3)}$ to hold, so $(5^{(1/3)})^3$	MGSE9-12.F.BF.4c– Read values	functions, identifying zeros when suitable	functions.	
must equal 5.	of an inverse function from a graph	factorizations are available, and showing	MGSE9-12.F.IF.7d– Graph rational	
MGSE9-12.N.RN.2 -	or a table, given that the function	end behavior.	functions, identifying zeros and asymptotes	
Rewrite expressions	has an inverse.		when suitable factorizations are available,	
involving radicals and			and showing end behavior.	
rational exponents using the				
properties of exponents.				

Standards Spring Semester				
Unit 5	Unit 6	Unit 7		
Exponentials & Logarithms	Mathematical Modeling	Inferences & Conclusions from Data		
Write expressions in equivalent forms to solve	Write expressions in equivalent forms to solve problems	Summarize, represent, and interpret data on a		
problems	MGSE9-12.A.SSE.4– Derive the formula for the sum of a	single count or measurement variable		
MGSE9-12.A.SSE.3– Choose and produce an	finite geometric series (when the common ratio is not 1), and	MGSE9-12.S.ID.2 – Use statistics appropriate to		
equivalent form of an expression to reveal and	use the formula to solve problems. For example, calculate	the shape of the data distribution to compare		
explain properties of the quantity represented	mortgage payments.	center (median, mean) and spread (interquartile		
by the expression.	MGSE9-12.A.CED.1– Create equations and inequalities in	range, standard deviation) of two or more		
MGSE9-12.A.SSE.3c– Use the properties of	one variable and use them to solve problems. Include	different data sets.		
exponents to transform expressions for	equations arising from linear, quadratic, simple rational, and	MGSE9-12.S.ID.4– Use the mean and standard		
exponentials functions. For example, the	exponential functions.	deviation of a data set to fit it to a normal		
expression 1.15 ^t , where t is in years, can be	MGSE9-12.A.CED.2- Create linear, quadratic, and	distribution and to estimate population		
rewritten as $(1.15^{(1/12)})^{12t} \approx 1.012^{(12t)}$ to reveal	exponential equations in two or more variables to represent	percentages. Recognize that there are data sets		
the approximate equivalent monthly interest	relationships between quantities; graph equations on	for which such a procedure is not appropriate.		
rate if the annual rate is 15%.	coordinate axes with labels and scales. (The phrase "in two or	Use calculators, spreadsheets, and tables to		
Analyze functions using different	more variables" refers to formulas like the compound interest	estimate areas under the normal curve.		
representations	formula, in which $A = P(1+r/n)^{nt}$ has multiple variables.)	Understand and evaluate random processes		
MGSE9-12.F.IF.7– Graph functions	MGSE9-12.A.CED.3– Represent constraints by equations or	underlying statistical experiments		
expressed algebraically and show key features	inequalities, and by systems of equation and/or inequalities,	MGSE9-12.S.IC.1– Understand statistics as a		
of the graph both by hand and by using	and interpret data points as possible (i.e. a solution) or not	process for making inferences about population		
technology.	possible (i.e. non-solution) under the established constraints.	parameters based on a random sample from that		
MGSE9-12.F.IF.7e– Graph exponential and	MGSE9-12.A.CED.4– Rearrange formulas to highlight a	population.		
logarithmic functions, showing intercepts and	quantity of interest using the same reasoning as in solving	MGSE9-12.S.IC.2– Decide if a specific model		
end behavior.	equations. Examples: Rearrange Ohm's law $V = IR$ to	is consistent with the results from a given data-		
MGSE9-12.F.IF.8– Write a function defined	highlight resistance R; Rearrange area of a circle formula $A = \pi r^2$ to highlight the radius r.	generating process, e.g., using simulation. For example, a model says a spinning coin falls		
by an expression in different but equivalent	Represent and solve equations and inequalities graphically	heads up with probability 0.5. Would a result of		
forms to reveal and explain different properties of the function.	MGSE9-12.A.REI.11– Using graphs, tables, or successive	5 tails in a row cause you to question the model?		
MGSE9-12.F.IF.8b– Use the properties of	approximations, show that the solution to the equation $f(x) =$	Make inferences and justify conclusions from		
exponents to interpret expressions for	g(x) is the x-value where the y-values of $f(x)$ and $g(x)$ are the	sample surveys, experiments, and observational		
exponential functions. For example, identify	same.	studies		
percent rate of change in functions such as y =	Interpret functions that arise in applications in terms of the	MGSE9-12.S.IC.3– Recognize the purposes of		
$(1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{(12t)}$, $y =$	context	and differences among sample surveys,		
$(1.2)^{(t/10)}$, and classify them as representing	MGSE9-12.F.IF.6 – Calculate and interpret the average rate	experiments, and observational studies; explain		
exponential growth and decay.	of change of a function (presented symbolically or as a table)	how randomization relates to each.		
Build new functions from existing functions	over a specified interval. Estimate the rate of change from a	MGSE9-12.S.IC.4–Use data from a sample		
MGSE9-12.F.BF.5– Understand the inverse	graph.	survey to estimate a population mean or		
relationship between exponents and	MGSE9-12.F.IF.9- Compare properties of two functions	proportion; develop a margin of error through		
logarithms and use this relationship to solve	each represented in a different way (algebraically, graphically,	the use of simulation models for random		
problems involving logarithms and exponents.	numerically in tables, or by verbal descriptions). For example,	sampling.		
Construct and compare linear, quadratic, and	given a graph of one function and an algebraic expression for	MGSE9-12.S.IC.5– Use data from a		
exponential models and solve problems	another, say which has the larger maximum.	randomized experiment to compare two		
MGSE9-12.F.LE.4- For exponential models,	Building new functions from existing functions	treatments; use simulations to decide if		
express as a logarithm the solution to $ab^{(ct)} = d$	MGSE9-12.F.BF.3– Identify the effect on the graph of	differences between parameters are significant.		
where a, c, and d are numbers and the base b	replacing $f(x)$ by $f(x)+k$, $kf(x)$, $f(kx)$, and $f(x+k)$ for specific	MGSE9-12.S.IC.6– Evaluate reports based on		
is 2, 10, or e; evaluate the logarithm using	values of k (both positive and negative); find the values of k	data. For example, determining quantitative or		
technology.	given the graphs. Experiment with cases and illustrate an	categorical data; collection methods; biases or		
	explanation of the effects on the graph using technology.	flaws in data.		
	Include recognizing even and off functions from their graphs			
	and algebraic expressions for them.			

Expectations:

- Students are to be in class, prepared, and ready to learn when the bell rings to begin the period. Class will be dismissed at the teacher's instruction.
- Students will actively participate in class in a manner that facilitates learning the material being presented or reviewed.
- Students who are absent from class, and the absence is excused according to the student handbook, are responsible to determine what work was missed and make up that work according to the timeline set forth in the student handbook.
- Students will handle technology responsibly. Technology use can be very helpful in the classroom but that which is not conducive to learning the material will not be allowed.

Grading:

- ➤ Grades are cumulative for the entire year.
- Formative and Summative work and grades, together, count 80% of the overall grade. 40% for Practice work and 40% for Assessments.
- ➤ The Final Exam counts 20% of the final grade.

Materials:

- Students are required to have pencils and paper though they will also find items such as rulers and graph paper useful.
- A three-ring binder or another method students find useful will be needed for organizing notes and monitoring standards throughout the course.
- Students will need a Graphing Calculator (examples include: TI-83/83+, TI-84/84+, TI-nspire, TI-nspire CX, Casio PRIZM FX-CG10, Classpad 300, FX-9750GPlus, 9860G). A classroom set of TI calculators will be available for use during class.

Communication:

- If you wish to contact me, please e-mail me at any time. I will answer e-mails within 24-hours unless I'm out of town.
- ▶ If you desire a parent conference, you will need to schedule it through the school counseling office.
- Grades are accessible through Infinite Campus. It is recommended that you monitor Infinite Campus on a regular basis. I update Infinite Campus according to the schedule set forth by Henry County Schools (and, when possible, more often).
- I attend many of the school's sporting, academic, and cultural events, so on many Fridays and Saturdays you can speak with me at one of these activities.

What can students do to be successful?

- **Be in class every day.**
- Pay attention throughout the entire class time. We have reached a time where a new concept is being presented or discovered each day. If a student is distracted during class they will miss things that are important to gain understanding.
- This is an honours-level class and will move quicker than the regular course and at a deeper level of understanding. There will be material presented in this course that goes beyond the regular state curriculum, as should be expected for such a course.
- If a student has a question or they do not believe they understand something, come in and get help before or after school, as tutoring is available, as soon as possible. The longer a student waits to get questions answered the more difficult it becomes to catch up.

Technology

- The purpose of the new electronic device policy is to make sure that there is no distraction to the learning environment and that every student can be completely focused on academic achievement.
- ۶
- If a student is in possession of any electronic devices (smartphone, tablet, etc.), then those devices must be placed in an assigned pocket of a classroom phone caddy during every class period including instructional focus. If you have more than one device, (ex: multiple smartphones, and/or tablets), then both items must be placed in the assigned pocket. Students will be allowed to use their devices in the morning in the commons area before first period, between class changes, and during lunches (as long as they are not speaking on the phone or playing music that others can hear).
- Please note that failure to comply with this expectation will result in a discipline referral and appropriate consequences will be given. Also, ELHS is not responsible for lost or stolen electronic devices. Students are encouraged to leave "non-instructional" personal items at home. The school-issued Chromebooks are the only electronic devices that are needed in the instructional setting.