Steps of the Scientific Process

SPICE – University of Florida

Introduction to the Scientific Process

 A logical, problem solving technique

Step 1: Identify a Problem

- Observe the world around you
- Using **observations**, identify a problem you would like to solve
 - Example: Why do te
- This is a quest and can't loc
- "Why" and beginnings of

the answer to

are good

Remember?

Observation

- Uses our <u>senses</u> to gather information
- <u>Qualitative</u>: uses our 5 senses
 - The termites follow a circle made with a blue pen on white paper
- Quantitative: uses **number**s
 - 3 termites follow a circular blue pen line that is 5 cm in diameter

Inference

- A logical interpretation of events based on prior <u>knowledge</u> or <u>opinion</u>
 - Educated guess
- Termites follow the blue line because the like it.

Dame use observations or inferences when identifying a problem?

Step 2: Gather Information

- Use references to do background research
 - Books
 - Journals
 - Magazines
 - Internet
 - TV
 - Videos
 - Interview Experts

- Example: Termites
 - Live underground
 - Don't have compound eyes (can only see light and dark)

Step 3: Formulate a Hypothesis

Hypothesis

- Possible answer to a question that can be tested
- based on <u>observations</u> and knowledge
- "If" "Then" "Because" statement

Example: Termites

- Termites:
 - I hypothesis that *if* the termites follow a dark colored pen on a dark background <u>then</u> they follow the dark pen on a light background <u>because</u> of the color contrast since they see light and dark, but not color.

Do we use observation or inference to formulate a hypothesis?

Step 4: Develop an Experiment

Materials:

- <u>A list of all the things you</u> need
- Supplies

Procedure

- Step by step instructions
- Identifies the variables used in the experiment

How would you describe how to make a Peanut Butter and Jelly Sandwich to someone who had never done it?

To someone who didn't know what peanut butter or jelly is?

Variables: Independent Variable

- The variable <u>I</u> (the scientist) change or manipulate
- Examples:
 - The color of paper under the termites
 - The color of pen used
 - The brand of pen used

Variables: Dependent Variable

- Is measured in the experiment
- Changes because of the independent variable
- "Depends" on the independent variable
- Examples:
 - Does the termite follow the line (yes/no)
 - How many termites follow the line (whole number)
 - How long do the termites follow the line (time)

Variables: Constant

- All the factors in the experiments that are kept the <u>same</u>
- Everything except the independent variable
- Keeps the experiment 'fair'

Examples:

- If you test color of paper, keep the color of pen constant
- If you test the smell of pen, keep the color and type of pen constant (only change smell)
- The exact termites used
- The time of day and how long the termites are there
- The shape of the line drawn

Variable: Control

- The normal condition that you compare the other conditions to
- Recreate the conditions you first observed
- Example:
 - Termites in a Pitri dish on white filter paper and draw a blue line with a bic pen in the same shape as before.

Step 5: Record and Organize Data

- Write all observations and measurements
- Use a table to organize your data
 - List your independent variable on the left side
 - Record your dependent variables on the <u>right side</u>

• If you have more than one dependent variable, use a new column for each dependent variable

Independent Variable	Dependent Variable: Did they follow the line?
Blue ink on white paper	Yes/No
Blue ink on black paper	Yes/No

Which one of these independent variables is the control?

08/12/12 Which part of the independent variable is the constant?

Step 6: Analyze Data

- "A picture is worth a thousand words"
- Compare and look for trends and patterns using graphs

Bar Graph

Line Graph

Number of termites on the ink line for 40 seconds

Pie Chart

Step 7: Make Conclusions

- You must repeat the experiment to make the data valid
- You should run your experiment at less t <u>3</u> times to confirm your results of the state of the
 - You can run all the experiments at one time, or run one after the other
- Each separate experiment is called a <u>Repetition</u> (or Rep).