CHAPTER 16

Get ready to take notes!

There are 3 states of matter:

GAS

Kinetic theory explains how particles in matter behave. All matter is made of small particles in constant, random motion. They collide with each other and the walls of their container.

of a material's particles and causes the particles to

vibrate in place.

Average kinetic energy is the temperature of the substance,

or how fast the particles

- are moving;
- the lower
- the temperature,
- the slower
- the particle motion.

particles are closely packed together in a specific type of geometric arrangement.

Solid state

Liquid state - A solid will liquefy at the melting point as the particles gain energy to overcome their ordered arrangement. The amount of energy required

to reach the melting point is called

heat of fusion.

Liquid particles have more space between them allowing them to flow and take the shape of their container.

Gas state - the particles in a liquid have enough energy to escape the attractive forces of the other particles in the liquid.

Heat of vaporization - the energy needed to change a liquid to a gas.

Boiling point – the pressure of the liquid's vapor equals the pressure of the atmosphere, & the liquid becomes La gas.

As solids melt & liquids vaporize, the temperature remains constant; the temperature Temperature vs. Heat will increase 10080 only after the emperature (°C) 60 attractive forces 40 of the earlier 20 state have been 0 b overcome. 10 20 50 60 70 80 90 100 Heat (kJ)

Heating curve of a liquid

Plasma - 4th state of matter consisting of high-temperature gas with

positively & negatively charged particles.

WARM UP 9.6.11

DESCRIBE THE PARTICLES IN BLOCK A. IS IT A SOLID, LIQUID, OR GAS?

NEW RULES

- CLEAN UP AFTER YOURSELF!!!!
- EVERY PIECE OF PAPER=POP QUIZ NEXT DAY for that many pieces on floor!!!!

• Stars ARE TO STAY THERE!!!! DON'T REMOVE THEM (I know your seat number)

Properties of Fluids

Buoyancy the ability of a fluid (liquid or gas) to exert

an upward force on an object immersed in it.

Archimedes' principle

- The buoyant force on an object
- is equal to the weight
- of the fluid
- displaced
- by the
- object.

An object will float if its weight is less than the buoyant force from the fluid.

An object in a fluid will **sink** if its weight is **more** than the buoyant force from the fluid.

Archimedes Examples

• Boats use this principle to float

Pascal's principle

Pressure (force exerted/unit area) applied to a fluid is transmitted equally throughout the fluid.

Hydraulic machines use this principle to lift heavy loads.

Essential Characteristics

- P, P, P
 - Pascal's, principle of pressure
 - Unit for Pressure is Pascal

Examples

- Squeezing a ketchup bottle
- Hydraulic machines use this principle to lift heavy loads

Bernoulli's principle

As the velocity of a fluid increases,

the pressure **hearted** by the fluid decreases.

Essential Characteristics

 Velocity goes up, Pressure goes down

Examples

- Airplanes fly
- Funnel demonstration

Boyle's Law

At a constant temperature ...

as the pressure increases, the volume decreases and as the pressure decreases, the volume increases.

Essential Characterisitcs

- P: Up
- T: Constant
- V: Down

• Inversely related

Examples

• Pressure /Rocket demonstration

• Weather balloons: as atmospheric pressure decreases, volume of air increase (it expands)

Charles's Law

At a constant pressure,

as the temperature increases, the volume increases and as the temperature decreases, the volume decreases.

Essential Characteristics

- P: Constant
- T: up
- V: up

• Directly related

Examples

• Bubbles getting bigger on a hot plate

• Cold tires in the morning looking flat

• Balloon in the freezer will shrink

Thermal expansion

An increase in the size of a substance when the temperature increases. The size of a substance will decrease when the temperature decreases.

Thermal Expansion

- Essential Characteristics
 - Temp goes up, size goes up
 - Temp goes down, size goes down

Expansion joints allow for this to

occur

Other Examples

- Hot air balloons, (as air is heated, becomes separates and becomes less dense)
- Galileo thermometer

NON EXAMPLE Water is an exception. It

as it becomes a solid.

Warm up 9.8.11

• 1. If I hold pressure constant and decrease the temperature, what will happen to the volume? (PTV pencil)

• 2. Name this law

Warm up 9.7.11

 Calculate the density of a rock that has a mass of 454 g and a volume of 100 cm³.

- SHOW YOUR WORK!!!
- DON'T FORGET THE UNITS!!!!

Data Table

	Volume	1000	800	600	400	200m
		mL	mL	mL	mL	L
	Temp (C)	Press (kPa	Press (kPa	Press (kPa	Press (kPa	Press (kPa
Off	20 C					
Lo	60 C					
Med	100 C					
High	140 C					

Conclusion to PTV Lab

- Write a summary about the lab
 - What happened to the particles as they were heated.
 - As we decreased the volume, the pressure _____ with temperature constant...This was an example of _____Law
 - As we increased the temperature, the pressure ______ with a constant volume.

Warm up 9.2.10

- Look at page 101 in your book.
 - Graphing Skills
 - Answer questions 1 and 4