Similarity

Warm Up

1. If $\triangle QRS \cong \triangle ZYX$, identify the pairs of congruent angles and the pairs of congruent sides. $\angle Q \cong \angle Z; \ \angle R \cong \angle Y; \ \angle S \cong \angle X;$

 $\overline{QR} \cong \overline{ZY}; \ \overline{RS} \cong \overline{YX}; \ \overline{QS} \cong \overline{ZX}$

Solve each proportion.

2.
$$\frac{2}{x-3} = \frac{8}{3x-3}$$

3. $\frac{x-6}{42} = \frac{2x-14}{77}$
x = 9
x = 18

Identify similar polygons.

Apply properties of similar polygons to solve problems.

similar similar polygons similarity ratio Figures that are <u>similar</u> (\sim) have the same shape but not necessarily the same size.

 $\triangle 1$ is similar to $\triangle 2(\triangle 1 \sim \triangle 2)$.

 $\triangle 1$ is not similar to $\triangle 3(\triangle 1 \not\sim \triangle 3)$.

"Similar Triangles."

http://www.mathopenref.com/similartriangles.html

Example 1: Describing Similar Polygons

Identify the pairs of congruent angles and corresponding sides.

 $\angle N \cong \angle Q$ and $\angle P \cong \angle R$. By the Third Angles Theorem, $\angle M \cong \angle T$.

$$\frac{MP}{TR} = \frac{2.2}{1.1} = 2 \qquad \frac{MN}{TQ} = \frac{2}{1} = 2 \qquad \frac{NP}{QR} = \frac{1}{0.5} = 2$$

Check It Out! Example 1

Identify the pairs of congruent angles and corresponding sides.

 $\angle B \cong \angle G$ and $\angle C \cong \angle H$. By the Third Angles Theorem, $\angle A \cong \angle J$.

$$\frac{AB}{JG} = \frac{10}{5} = 2 \qquad \frac{BC}{GH} = \frac{6}{3} = 2 \qquad \frac{AC}{JH} = \frac{11.6}{5.8} = 2$$

A **similarity ratio** is the ratio of the lengths of

the corresponding sides of two similar polygons.

The similarity ratio of $\triangle ABC$ to $\triangle DEF$ is $\frac{3}{6}$, or $\frac{1}{2}$. The similarity ratio of $\triangle DEF$ to $\triangle ABC$ is $\frac{6}{3}$, or 2.

Example 2A: Identifying Similar Polygons

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

rectangles ABCD and EFGH

Example 2A Continued

Step 1 Identify pairs of congruent angles.

 $\angle A \cong \angle E, \angle B \cong \angle F,$ All $\angle s$ of a rect. are rt. $\angle s$ $\angle C \cong \angle G$, and $\angle D \cong \angle H$. and are \cong . 9 C F 6 G 6 Η Step 2 Compare corresponding sides. $\frac{AB}{EF} = \frac{6}{4} = \frac{3}{2}, \frac{BC}{FG} = \frac{9}{6} = \frac{3}{2}, \frac{CD}{GH} = \frac{AB}{EF} = \frac{3}{2}, \text{ and } \frac{DA}{HE} = \frac{BC}{FG} = \frac{3}{2}.$ Thus the similarity ratio is $\frac{3}{2}$, and rect. ABCD ~ rect. EFGH.

Check It Out! Example 2

Step 1 Identify pairs of congruent angles.

 $\angle N \cong \angle M$, $\angle L \cong \angle P$, $\angle S \cong \angle J$

Check It Out! Example 2 Continued

Step 2 Compare corresponding sides.

$$\frac{LJ}{PS} = \frac{75}{30} = \frac{5}{2}, \frac{LM}{PN} = \frac{60}{24} = \frac{5}{2}, \frac{JM}{SN} = \frac{45}{18} = \frac{5}{2}$$

Thus the similarity ratio is $\frac{5}{2}$, and $\Delta LMJ \sim \Delta PNS$.

Helpful Hint

When you work with proportions, be sure the ratios compare corresponding measures.

Example 3: Hobby Application

Find the length of the model to the nearest tenth of a centimeter.

Let x be the length of the model in centimeters. The rectangular model of the racing car is similar 6.3 cm to the rectangular racing car, so the corresponding lengths are proportional.

Example 3 Continued

length of racing car _	_ width of racing car
length of model	width of model
$\frac{5}{x}$ =	= <u>1.8</u> 6.3
5(6.3) = x(1.8)	Cross Products Prop.
31.5 = 1.8x	Simplify.
17.5 = x	Divide both sides by 1.8.

The length of the model is 17.5 centimeters.

Check It Out! Example 3

A boxcar has the dimensions shown. A model of the boxcar is 1.25 in. wide. Find the length of the model to the nearest inch.

Check It Out! Example 3 Continued

$$\frac{36.25}{x} = \frac{9}{1.25}$$

$$1.25(36.25) = x(9) \qquad Cross Products Prop.$$

$$45.3 = 9x \qquad Simplify.$$

$$5 \approx x \qquad Divide both sides by 9.$$

The length of the model is approximately 5 inches.

Lesson Quiz: Part I

 Determine whether the polygons are similar. If so, write the similarity ratio and a similarity

statement. B 2.0 cm C F 2.5 cm G A 5 cm G

2. The ratio of a model sailboat's dimensions to the actual boat's dimensions is $\frac{1}{30}$. If the length of the model is 10 inches, what is the length of the actual sailboat in feet?

Lesson Quiz: Part II

3. Tell whether the following statement is sometimes, always, or never true. Two equilateral triangles are similar.

Always