Warm Up

1. If $\triangle QRS \cong \triangle ZYX$, identify the pairs of congruent angles and the pairs of congruent sides. $\angle Q \cong \angle Z$; $\angle R \cong \angle Y$; $\angle S \cong \angle X$; $\overline{QR} \cong \overline{ZY}$; $\overline{RS} \cong \overline{YX}$; $\overline{QS} \cong \overline{ZX}$

Solve each proportion.

$$\frac{2}{x-3} = \frac{8}{3x-3}$$

$$\frac{x}{x} = \frac{9}{3x-3}$$

$$3. \frac{x-6}{42} = \frac{2x-14}{77}$$
$$x = 18$$

Objectives

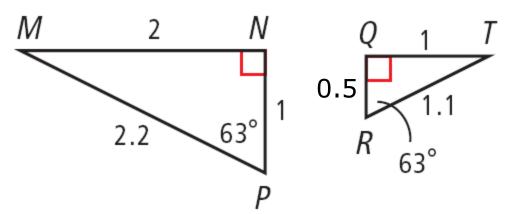
Identify similar polygons.

Apply properties of similar polygons to solve problems.

Vocabulary

similar similar polygons similarity ratio Figures that are $\underline{similar}$ (\sim) have the same shape but not necessarily the same size.

 $\triangle 1$ is similar to $\triangle 2(\triangle 1 \sim \triangle 2)$.

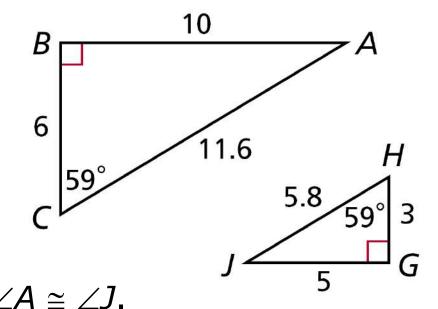

 $\triangle 1$ is not similar to $\triangle 3(\triangle 1 \neq \triangle 3)$.

Similar Polygons

DIAGRAM DEFINITION STATEMENTS Two polygons are similar polygons if $\angle A \cong \angle E$ and only if their 12 $\angle B \cong \angle F$ corresponding $\angle C \cong \angle G$ angles are 10 10.8 congruent and their $\angle D \cong \angle H$ corresponding side $\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE} = \frac{1}{2}$ lengths are proportional. ABCD ~ EFGH

Example 1: Describing Similar Polygons

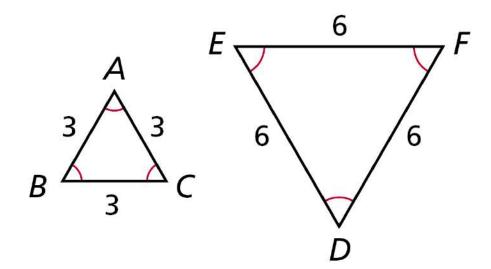
Identify the pairs of congruent angles and corresponding sides.



$$\angle N \cong \angle Q$$
 and $\angle P \cong \angle R$.
By the Third Angles Theorem, $\angle M \cong \angle T$.

$$\frac{MP}{TR} = \frac{2.2}{1.1} = 2$$
 $\frac{MN}{TQ} = \frac{2}{1} = 2$ $\frac{NP}{QR} = \frac{1}{0.5} = 2$

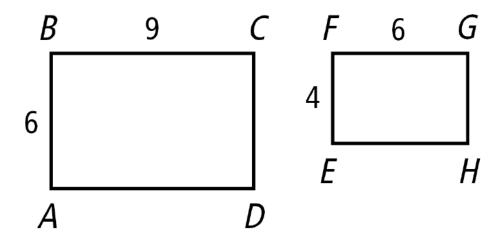
Check It Out! Example 1


Identify the pairs of congruent angles and corresponding sides.

$$\angle B \cong \angle G$$
 and $\angle C \cong \angle H$.
By the Third Angles Theorem, $\angle A \cong \angle J$.

$$\frac{AB}{JG} = \frac{10}{5} = 2$$
 $\frac{BC}{GH} = \frac{6}{3} = 2$ $\frac{AC}{JH} = \frac{11.6}{5.8} = 2$

A <u>similarity ratio</u> is the ratio of the lengths of the corresponding sides of two similar polygons. The similarity ratio of $\triangle ABC$ to $\triangle DEF$ is $\frac{3}{6}$, or $\frac{1}{2}$. The similarity ratio of $\triangle DEF$ to $\triangle ABC$ is $\frac{6}{3}$, or 2.



Writing Math

Writing a similarity statement is like writing a congruence statement—be sure to list corresponding vertices in the same order.

Example 2A: Identifying Similar Polygons

Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

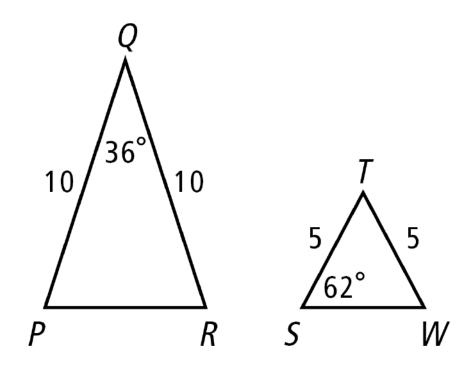
rectangles ABCD and EFGH

Example 2A Continued

Step 1 Identify pairs of congruent angles.

$$\angle A \cong \angle E$$
, $\angle B \cong \angle F$, All $\angle s$ of a rect. are rt. $\angle s$ $\angle C \cong \angle G$, and $\angle D \cong \angle H$. and are \cong .

Step 2 Compare corresponding sides.


$$\frac{AB}{EF} = \frac{6}{4} = \frac{3}{2}, \frac{BC}{FG} = \frac{9}{6} = \frac{3}{2}, \frac{CD}{GH} = \frac{AB}{EF} = \frac{3}{2}, \text{ and } \frac{DA}{HE} = \frac{BC}{FG} = \frac{3}{2}.$$

Thus the similarity ratio is $\frac{3}{2}$ and rect. ABCD ~ rect. EFGH.

Example 2B: Identifying Similar Polygons

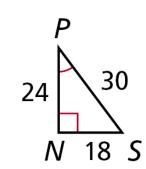
Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

 \triangle **ABCD** and \triangle **EFGH**

Example 2B Continued

Step 1 Identify pairs of congruent angles.

$$\angle P \cong \angle R$$
 and $\angle S \cong \angle W$ isos. \triangle


Step 2 Compare corresponding angles.

$$m\angle P = m\angle R = \frac{1}{2}(180^{\circ} - 36^{\circ}) = 72^{\circ}$$

 $m\angle W = m\angle S = 62^{\circ}$
 $m\angle T = 180^{\circ} - 2(62^{\circ}) = 56^{\circ}$

Since no pairs of angles are congruent, the triangles are not similar.

Check It Out! Example 2

Determine if $\triangle JLM \sim \triangle NPS$. If so, write the similarity ratio and a similarity statement.

45

M

60

Step 1 Identify pairs of congruent angles.

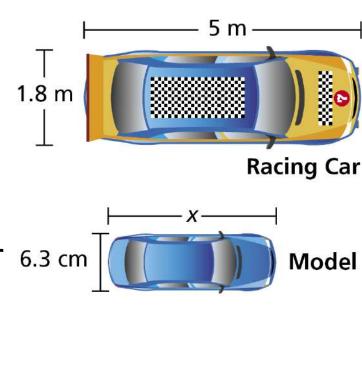
$$\angle N \cong \angle M$$
, $\angle L \cong \angle P$, $\angle S \cong \angle J$

Check It Out! Example 2 Continued

Step 2 Compare corresponding sides.

$$\frac{LJ}{PS} = \frac{75}{30} = \frac{5}{2}, \frac{LM}{PN} = \frac{60}{24} = \frac{5}{2}, \frac{JM}{SN} = \frac{45}{18} = \frac{5}{2}$$

Thus the similarity ratio is $\frac{5}{2}$, and $\Delta LMJ \sim \Delta PNS$.


Helpful Hint

When you work with proportions, be sure the ratios compare corresponding measures.

Example 3: Hobby Application

Find the length of the model to the nearest tenth of a centimeter.

Let x be the length of the model in centimeters. The rectangular model of the racing car is similar 6.3 cm to the rectangular racing car, so the corresponding lengths are proportional.

Example 3 Continued

$$\frac{\text{length of racing car}}{\text{length of model}} = \frac{\text{width of racing car}}{\text{width of model}}$$

$$\frac{5}{x} = \frac{1.8}{6.3}$$

$$5(6.3) = x(1.8) \quad \text{Cross Products Prop.}$$

$$31.5 = 1.8x \quad \text{Simplify.}$$

$$17.5 = x \quad \text{Divide both sides by 1.8.}$$

The length of the model is 17.5 centimeters.

Check It Out! Example 3

A boxcar has the dimensions shown. A model of the boxcar is 1.25 in. wide. Find the length of the model to the nearest inch.

$$\frac{\text{length of boxcar}}{\text{length of model}} = \frac{\text{width of boxcar}}{\text{width of model}}$$

$$\frac{36.25}{x} = \frac{9}{1.25}$$

Check It Out! Example 3 Continued

$$\frac{36.25}{x} = \frac{9}{1.25}$$

$$1.25(36.25) = x(9)$$

$$45.3 = 9x$$

$$5 \approx x$$
Divide both sides by 9.

The length of the model is approximately 5 inches.

Lesson Quiz: Part I

1. Determine whether the polygons are similar. If so, write the similarity ratio and a similarity statement.

F 2.5 cm G

2. The ratio of a model sailboat's dimensions to the actual boat's dimensions is $\frac{1}{30}$. If the length of the model is 10 inches, what is the length of the actual sailboat in feet?

Lesson Quiz: Part II

3. Tell whether the following statement is sometimes, always, or never true. Two equilateral triangles are similar.

Always