## Section 4.7

# Sequences & Series



### **Sequences** – sets of numbers Notation:

- $a_n =$ (represents the formula for finding terms)
- n = term number
  - $a_4$  is the notation for the 4<sup>th</sup> term
  - $a_{32}$  is the notation for the  $32^{nd}$  term **Examples:**

If  $a_n = 2n - 3$ , find the first 5 terms.

If  $a_n = -3n + 1$ , find the 20th term.

#### Ex.1 Find the first four terms of the sequence $a_n = 3n - 2$ $a_1 = 3(1) - 2 = 1$ First term $a_{2} = 4$ Second term $a_{3} = 7$ Third term $a_4 = 10$ **Fourth term**

#### Writing Rules for Sequences

We can calculate as many terms as we want as long as we know the <u>rule</u> or equation for  $a_n$ .

Example: 3, 5, 7, 9, \_\_\_\_, \_\_\_\_.

 $a_n = 2n + 1$ 

#### Arithmetic Sequences

- When you want to find a large sequence, this process is long and there is great room for error.
- To find the 20<sup>th</sup>, 45<sup>th</sup>, etc. term use the following formula:

$$a_n = a_1 + (n - 1)d$$

### Arithmetic Sequences $a_n = a_1 + (n - 1)d$

Where:

- **a**<sub>1</sub> is the first number in the sequence
- n is the number of the term you are looking for
- d is the common difference
  - a<sub>n</sub> is the value of the term you are looking for

### Arithmetic Sequences

• Find the 15<sup>th</sup> term of the sequence:

34, 23, 12,... Using the formula  $a_n = a_1 + (n - 1)d$ ,  $a_1 = 34$ 

- d = -11
- **n** = 15

 $a_n = 34 + (n-1)(-11) = -11n + 45$ 

 $a_{15} = -11(15) + 45$ 

 $a_{15} = -120$ 

#### Geometric Sequences

• Again, use a formula to find large numbers.

• 
$$\mathbf{a}_n = \mathbf{a}_1 \bullet (\mathbf{r})^{n-1}$$

#### Geometric Sequences

- Find the 10<sup>th</sup> term of the sequence :
  4,8,16,...
- $\mathbf{a}_n = \mathbf{a}_1 \bullet (\mathbf{r})^{n-1}$
- $a_1 = 4$
- r = 2
- n = 10

#### Geometric Sequences

 $a_n = a_1 \cdot (r)^{n-1}$   $a_{10} = 4 \cdot (2)^{10-1}$   $a_{10} = 4 \cdot (2)^9$   $a_{10} = 4 \cdot 512$  $a_{10} = 2048$ 

## **Series** - the sum of a certain number of terms of a sequence Sigma Notation: $\sum_{i=1}^{n} a_i$ Formula Add up the terms in the sequence

"Add up the terms in the sequence beginning at term number 1 and going through term number "n".

#### Examples

 $1.\sum^{4} -5i = -5(1) + -5(2) + -5(3) + -5(4) = -50$  $2.\sum_{i=1}^{5} \frac{1}{2}i + 1 = \frac{25}{2}$  $3.\sum^{7} i = 25$ 4.  $\sum_{1}^{6} 3$ i=1

#### **SUMMATION NOTATION** Sum of the terms of a finite sequence

**Upper limit of summation** 

(Ending point)



Lower limit of summation

(Starting point)

#### Ex 7b

 $\sum_{k=1}^{\infty} (1+k^2) = (1+3^2) + (1+4^2) + (1+5^2) + (1+6^2)$ k=3=(10)+(17)+(26)+(37)=90