Name:_____

Period: _____

Show all work. Attach any additional paper used.

For #1-10, use the chart to the right of a differentiable function, p(x):

1) Given $g(x) = x^2 p(x) + 2 p(x)$, find g'(x).

Х	p(x)	p'(x)
-3	5	-2
2	3	6
4	-1	7

2) Now find g'(2) in simplified form.

3) Given
$$L(x) = 8p(x) + \frac{x}{p(x)} + x - 6$$
, find $L'(x)$.

4) Now find L'(4) in simplified form.

5) Find g'(-3) + L'(2) in simplified form.

- 6) Estimate p'(3). 7) If Y(x) = p(2x), find Y'(x). 8) Now find Y'(2).
- 9) Find the local linearization of p(x) at x = -3. 10) Using your answer to #9, estimate p(-2.8).

Find each derivative in simplified form. (don't forget chain when appropriate!!) 🕲

11)
$$y(x) = \frac{6x^6 - x^4 + 3x^2 - 9}{3x^2}$$
 avoid quotient 12) $g(x) = \frac{1}{2}x^4 - 3x^2 + x - 5$

13)
$$T(x) = 3x\cos 5x - 2\sin x + \sqrt[5]{x} - 5\cot 4x^2$$

14) $f(x) = \frac{2x^2 + 1}{5x + 3}$

15)
$$M(x) = \frac{6-x}{x^2-3} + 4x^2 \sec x - 12$$

16) $f(x) = x^3 \csc 8x - \tan x \cot x$ *think*

17)
$$g(\theta) = \frac{2\sin\theta + \cot\theta}{\cos\theta} \qquad \text{*avoid quotient*} \qquad 18) \ y(x) = (8x^2 + 3)^5 (5x - 11)^8$$

19)
$$j(x) = \frac{8x+2}{\sqrt{3x^4+1}}$$
 20) $T(x) = \csc^7 (5x^2 + x)$

Answer each.

21) Choose True or False AND explain: A differentiable function is always continuous.

22) Choose True or False AND explain: A continuous function is always differentiable.

23) Find the equation of the tangent line to $h(x) = \sqrt{5x^2 + 6x - 2}$ at x = 1.

24) Find the x-coordinates where $p(x) = 2x^3 - 9x^2 - 6x + 12$ has a slope of 3.

25) What is the instantaneous rate of change at x = 3 of the function g given by $g(x) = \frac{x^2 - 2}{x - 1}$?

26) Find the average rate of change in g(x) in question #25 on [2, 5].

27) Using the graph of N'(x), answer each question.a) Give the x-coordinates where N(x) has horizontal tangents.

b) Give the equation of the tangent line to N(x) at x = -2 if N(-2) = 6.

- c) Identify where N''(x) = 0. Explain.
- d) Where is N'(x) not differentiable? Explain.
- e) Where is N(x) not differentiable? Explain.

28) A particle moves along the x-axis so that its position at time *t* is given by $x(t) = t^2 - 6t + 5$. For what value of *t* is the velocity of the particle zero?

29) If $h(x) = \tan 2x$, then $\frac{dh}{dx}$ is what at $x = \frac{\pi}{6}$? (simplified answer)

30) Find the local linearization of $y = x + \cos x$ at $x = \frac{\pi}{2}$.

31) The function *f* is continuous on the closed interval [0, 2] and has values that are given in the table. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0, 2] if k =_____

x	0	1	2
f(x)	1	k	2

HINT: Sketch

a) 0 b) $\frac{1}{2}$ c) 1 d) 2 e) 3

32) The graph of f is shown in the figure on the left. Which of the following could be the graph of the derivative of f?

33) Sketch the graph of a function that meets the following criteria.

34) This is an old free response question:

Let *f* be the function defined by $f(x) = \begin{cases} 2x+1, & \text{for } x \le 2\\ \frac{1}{2}x^2+k, & \text{for } x > 2 \end{cases}$

a) For what value of k will *f* be continuous at x = 2? Justify your answer.

b) Using the value of k found in part (a), determine whether f is differentiable at x = 2. Justify your answer.

c) Let k = 4. Determine whether *f* is differentiable at x = 2. Justify your answer.

AP Calculus First Semester REVIEW & CATCH UP **Continued**

35) This is an old free response question:

Let g be the function defined as follows: $g(x) = \begin{cases} |x-1|+2, & \text{for } x < 1 \\ ax^2 + bx, & \text{for } x \ge 1 \end{cases}$ where a and b are constants.

a) If a = 2 and b = 3, is g continuous for all x? Justify your answer.

b) <u>Describe</u> all values of a and b for which g is a continuous function. (hint: you will only be able to find the relationship between a and b for this one)

c) For what <u>values</u> of *a* and *b* is *g* both continuous and differentiable?

37) The graph of y = h(x) is shown. Which of the following could be the graph of h'(x)

38) Identify the values for which g(x) is differentiable if $g(x) = \sqrt[7]{x^2}$. (notice the function is continuous)

For each piecewise, answer the questions.

39) Consider
$$h(x) = \begin{cases} x^2 + 8 & \text{if } x < 0 \\ 5\cos x + 3 & \text{if } x > 0 \end{cases}$$

a) Find $h'(x)$.
 $h'(x) = \begin{cases} \\ \\ \end{cases}$

b) Is h(x) continuous? Justify with calculus notation.

c) Is h(x) differentiable? Justify with calculus notation.

40) Consider
$$w(x) = \begin{cases} 5x - x^3 & \text{if } x > 1 \\ x + 3 & \text{if } x \le 1 \end{cases}$$

a) Find $w'(x)$.
 $w'(x) = \begin{cases} \\ \end{cases}$

b) Is w(x) continuous? Justify with calculus notation.

c) Is w(x) differentiable? Justify with calculus notation.

41) Consider
$$G(x) = \begin{cases} x^4 - 3x^2 + 5 & \text{if } x < -1 \\ x^3 - x + 3 & \text{if } x \ge -1 \end{cases}$$

a) Find $G'(x)$.
 $G'(x) = \begin{cases} \end{cases}$

b) Is G(x) continuous? Justify with calculus notation.

c) Is G(x) differentiable? Justify with calculus notation.

42) Find T'(x) if $T(x) = 6 w(x) + f(x^3) - y(5x) h(7x^4 - 3x + 2) + cot(9x)$ where y(x), w(x), and h(x) are all differentiable functions.